88 research outputs found
Observations on the method of determining the velocity of airships
To obtain the absolute velocity of an airship by knowing the speed at which two routes are covered, we have only to determine the geographical direction of the routes which we locate from a map, and the angles of routes as given by the compass, after correcting for the variation (the algebraical sum of the local magnetic declination and the deviation)
Locality and Bell's inequality
We prove that the locality condition is irrelevant to Bell in equality. We
check that the real origin of the Bell's inequality is the assumption of
applicability of classical (Kolmogorovian) probability theory to quantum
mechanics. We describe the chameleon effect which allows to construct an
experiment realizing a local, realistic, classical, deterministic and
macroscopic violation of the Bell inequalities.Comment: 23 pages, Plain TeX, A talk given at Capri conference, July 2000,
Corrected and Extended versio
Efficient size estimation and impossibility of termination in uniform dense population protocols
We study uniform population protocols: networks of anonymous agents whose
pairwise interactions are chosen at random, where each agent uses an identical
transition algorithm that does not depend on the population size . Many
existing polylog time protocols for leader election and majority
computation are nonuniform: to operate correctly, they require all agents to be
initialized with an approximate estimate of (specifically, the exact value
). Our first main result is a uniform protocol for
calculating with high probability in time and
states ( bits of memory). The protocol is
converging but not terminating: it does not signal when the estimate is close
to the true value of . If it could be made terminating, this would
allow composition with protocols, such as those for leader election or
majority, that require a size estimate initially, to make them uniform (though
with a small probability of failure). We do show how our main protocol can be
indirectly composed with others in a simple and elegant way, based on the
leaderless phase clock, demonstrating that those protocols can in fact be made
uniform. However, our second main result implies that the protocol cannot be
made terminating, a consequence of a much stronger result: a uniform protocol
for any task requiring more than constant time cannot be terminating even with
probability bounded above 0, if infinitely many initial configurations are
dense: any state present initially occupies agents. (In particular,
no leader is allowed.) Crucially, the result holds no matter the memory or time
permitted. Finally, we show that with an initial leader, our size-estimation
protocol can be made terminating with high probability, with the same
asymptotic time and space bounds.Comment: Using leaderless phase cloc
Topology by Design in Magnetic nano-Materials: Artificial Spin Ice
Artificial Spin Ices are two dimensional arrays of magnetic, interacting
nano-structures whose geometry can be chosen at will, and whose elementary
degrees of freedom can be characterized directly. They were introduced at first
to study frustration in a controllable setting, to mimic the behavior of spin
ice rare earth pyrochlores, but at more useful temperature and field ranges and
with direct characterization, and to provide practical implementation to
celebrated, exactly solvable models of statistical mechanics previously devised
to gain an understanding of degenerate ensembles with residual entropy. With
the evolution of nano--fabrication and of experimental protocols it is now
possible to characterize the material in real-time, real-space, and to realize
virtually any geometry, for direct control over the collective dynamics. This
has recently opened a path toward the deliberate design of novel, exotic
states, not found in natural materials, and often characterized by topological
properties. Without any pretense of exhaustiveness, we will provide an
introduction to the material, the early works, and then, by reporting on more
recent results, we will proceed to describe the new direction, which includes
the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte
- …