
Locality and Bell’s inequality

Luigi Accardi, Massimo Regoli

Centro Vito Volterra
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Abstract
We prove that the locality condition is irrelevant to Bell in equality. We

check that the real origin of the Bell’s inequality is the assumption of applica-
bility of classical (Kolmogorovian) probability theory to quantum mechanics.
We describe the chameleon effect which allows to construct an experiment
realizing a local, realistic, classical, deterministic and macroscopic violation
of the Bell inequalities.

1 Inequalities among numbers

Lemma 1 For any two numbers a, c ∈ [−1, 1] the following equivalent ine-
qualities hold:

|a± c| ≤ 1± ac (1)

Moreover equality in (68) holds if and only if either a = ±1 or c = ±1.

Proof. The equivalence of the two inequalities (68) follows from the fact that
one is obtained from the other by changing the sign of c and c is arbitrary in
[−1, 1].

Since for any a, c ∈ [−1, 1], 1± ac ≥ 0, (68) is equivalent to

|a± c|2 = a2 + c2 ± 2ac ≤ (1± ac)2 = 1 + a2c2 ± 2ac

and this is equivalent to

a2(1− c2) + c2 ≤ 1

which is identically satisfied because 1− c2 ≥ 0 and therefore

a2(1− c2) + c2 ≤ 1− c2 + c2 = 1 (2)

Notice that in (69) equality holds if and only if a2 = 1 i.e. a = ±1. Since,
exchanging a and c in (68) the inequality remains unchanged, the thesis
follows. Corollary (2). For any three numbers a, b, c ∈ [−1, 1] the following

equivalent inequalities hold:

|ab± cb| ≤ 1± ac (3)

and equality holds if and only if b = ±1 and either a = ±1 or c = ±1. Proof.
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For b ∈ [−1, 1],
|ab± cb| = |b| · |a± c| ≤ |a± c| (4)

so the thesis follows from Lemma 68. In (67) the first equality holds if and
only if b = ±1, so also the second statement follows from Lemma 68.

Lemma 2 . For any numbers a, a′, b, b′, c ∈ [−1, 1], one has

|ab− bc|+ |ab′ + b′c| ≤ 2 (5)

ab+ ab′ + a′b′ − a′b ≤ 2 (6)

In (63) equality holds if and only if b, b′, a, c = ±1.

Proof. Because of (61)
|ab− cb| ≤ 1− ac (7)

|ab′ − cb′| ≤ 1 + ac (8)

adding (58) and (49) one finds (63). The left hand side of (57) is ≤ than

|ab− ba′|+ |ab′ + b′a′| (9)

and replacing a′ by c, (49) becomes the left hand side of (63). If b, b′ = ±1 and
a = ±1 equality holds in (58) and (49) hence in (63). Conversely, suppose
that equality holds in (63) and suppose that either |b| < 1 or |b′| < 1. Then
we arrive to the contradiction

2 = |b|·|a−a′|+|b′|·|a+a′| < |a−a′|+|a+a′| ≤ (1−aa′)+(1+aa′) = 2 (10)

So, if equality holds in (63), we must have |b| = |b′| = 1. In this case (63)
becomes

|a− a′|+ |a+ a′| = 2 (11)

and, if either |a| < 1 or |a′| < 1, then from Lemma 68 we know that

|a− a′|+ |a+ a′| < (1− aa′) + (1 + aa′) = 2

so we must also have a, a′ = ±1. Corollary (4). If a, a′, b, b′, c ∈ {−1, 1},

then the inequalities (61) and (63) are equivalent and equality holds in all of
them. However the inequality in (57) may be strict. Proof. From Lemma
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68 we know that the inequalities (68) and (69) are equivalent. From Lemma
61 we know that (68) implies (63). Choosing b′ = a in (63), since a = ±1,
Lemma 69 implies that (63) becomes

|ab− cb| ≤ 1− ac

which is equivalent to (68). (57) is equivalent to

a(b+ b′) + a′(b′ − b) ≤ 2 (12)

In our assumptions either (b+b′) or (b′−b) is zero, so (12) is either equivalent
to

a(b+ b′) ≤ 2

or to
a′(b′ − b) ≤ 2

and in both cases we can choose a, b, b′ or a′, b, b′ so that the product is
negative and the inequality is strict.

2 The Bell inequality

Corollary (1) . (Bell inequality) Let A,B,C,D be random variables defined
on the same probability space (Ω,F , P ) and with values in the interval [−1, 1].
Then the following inequalities hold:

E(|AB −BC|) ≤ 1− E(AC) (13)

E(|AB +BC|) ≤ 1 + E(AC) (14)

E(|AB −BC|) + E(|AD +DC|) ≤ 2 (15)

where E denotes the expectation value in the probability space of the four
variables. Moreover (1) is equivalent to (69) and, if either A or C has values
±1, then the three inequalities are equivalent. Proof. Lemma ?? implies

the following inequalities (interpreted pointwise on Ω):

|AB −BC| ≤ 1− AC

|AB +BC| ≤ 1 + AC
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|AB −BC|+ |AD +DC| ≤ 2

from which (68), (69), (61) follow by taking expectation and using the fact
that |E(X)| ≤ E(|X|). The equivalence is established by the same argumen-
ts as in Lemma ??. Remark (2). Bell’s original proof, as well as the almost

totality of the available proofs of Bell’s inequality, deal only with the case of
random variables assuming only the values +1 and −1. The present gene-
ralization is not without interest because it dispenses from the assumption
that the classical random variables, used to describe quantum observables,
have the same set of values of the latter ones: a hidden variable theory is
required to reproduce the results of quantum theory only when the hidden
parameters are averaged over.

Theorem 1 Let S
(1)
a , S

(1)
c , S

(2)
b , S

(2)
d be random variables defined on a pro-

bability space (Ω,F , P ) and with values in the interval [−1,+1]. Then the
following inequalities holds:∣∣∣E(S(1)

a S
(2)
b )− E(S(1)

c S
(2)
b )
∣∣∣ ≤ 1− E(S(1)

a S(1)
c ) (16)∣∣∣E(S(1)

a S
(2)
b ) + E(S(1)

c S
(2)
b )
∣∣∣ ≤ 1 + E(S(1)

a S(1)
c ) (17)∣∣∣E(S(1)

a S
(2)
b )− E(S(1)

c S
(2)
b )
∣∣∣+
∣∣∣E(S(1)

a S
(2)
d ) + E(S(1)

c S
(2)
d )
∣∣∣ ≤ 2 (18)

Proof. This is a rephrasing of Corollary (2).

3 Implications of the Bell’s inequalities for

the singlet correlations

To apply Bell’s inequalities to the singlet correlations, considered in the EPR
paradox, it is enough to observe that they imply the following

Lemma 3 In the ordinary three-dimensional euclidean space there exist sets
of three, unit length, vectors a, b, c, such that it is not possible to find a
probability space (Ω,F , P ) and six random variables S

(j)
x (x = a, b, c, j =
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1, 2) defined on (Ω,F , P ) and with values in the interval [−1,+1], whose
correlations are given by:

E(S(1)
x · S(2)

y ) = −x · y ; x, y = a, b, c (19)

where, if x = (x1, x2, x3), y = (y1, y2, y3) are two three-dimensional vectors,
x · y denotes their euclidean scalar product, i.e. the sum x1y1 + x2y2 + x3y3.

Remark. In the usual EPR–type experiments, the random variables S
(j)
a , S

(j)
b , S

(j)
c

represent the spin (or polarization) of particle j of a singlet pair along the
three directions a, b, c in space. The expression in the right-hand side of (1)
is the singlet correlation of two spin or polarization observables, theoretically
predicted by quantum theory and experimentally confirmed by the Aspect-
type experiments. Proof. Suppose that, for any choice of the unit vectors

x = a, b, c there exist random variables S
(j)
x as in the statement of the Lem-

ma. Then, using Bell’s inequality in the form (??) with A = S
(1)
a , B = S

(2)
b ,

C = S
(1)
c ), we obtain∣∣∣E(S(1)

a S
(2)
b ) + E(S

(2)
b S(1)

c )
∣∣∣ ≤ 1 + E(S(1)

a S(1)
c ) (20)

Now notice that, if x = y is chosen in (68), we obtain

E(S(1)
x · S(2)

x ) = −x · x = −‖x‖2 = −1 ; x = a, b, c

and, since
∣∣∣S(1)

x S
(2)
x

∣∣∣ = 1 this is possible if and only if S
(1)
x = −S(2)

x (x = a, b, c)

P–almost everywhere. Using this (2) becomes equivalent to:∣∣∣E(S(1)
a S

(2)
b ) + E(S

(2)
b S(1)

c )
∣∣∣ ≤ 1− E(S(1)

a S(2)
c )

or, again using (1), to:

|a · b+ b · c| ≤ 1 + a · c (21)

If the three vectors a, b, c are chosen to be in the same plane and such that
a is perpendicular to c and b lies between a and b, forming an angle θ with
a, then the inequality (61) becomes:

cosθ + sin θ ≤ 1 ; 0 < θ < π/2 (22)
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But the maximum of the function of θ 7−→ sin θ+cos θ in the interval [0, π/2]
is
√

2 (obtained for θ = π/4). Therefore, for θ close to π/4, the left-hand
side of (67) will be close to

√
2 which is more that 1. In conclusion, for such

a choice of the unit vectors a, b, c, random variables S
(1)
a , S

(2)
b , S

(1)
c , S

(2)
c as in

the statement of the Lemma cannot exist.

Definition 1 A local realistic model for the EPR (singlet) correlations is
defined by:
(1) a probability space (Ω,F , P ) (2) for every unit vector x, in the three-

dimensional euclidean space, two random variables S
(1)
x , S

(2)
x defined on Ω

and with values in the interval [−1,+1] whose correlations, for any x, y, are
given by equation (68).

Corollary (3). If a, b, c are chosen so to violate (67) then a local realistic
model for the EPR correlations, in the sense of Definition 69, does not exist.
Proof. Its existence would contradict Lemma 68. Remark. In the literature

one usually distinguishes two types of local realistic models – deterministic
and stochastic ones. Both are included in Definition 69: the deterministic
models are defined by random variables S

(j)
x with values in the set{−1,+1};

while, in the stochastic models, the random variables take values in the
interval [−1,+1]. The original paper [Be64] was devoted to the deterministic
case. Starting from [Be71] several papers have been introduced to justify the
stochastic models. We prefer to distinguish the definition of the models from
their justification.

4 Bell on the meaning of Bell’s inequality

In the last section of [Be66] (submitted before [Be64], but published after)
Bell briefly describes Bohm hidden variable interpretation of quantum theory
underlining its non local character. He then raises the question: ... that there
is no proof that any hidden variable account of quantum mechanics must have
this extraordinary character ... and, in a footnote added during the proof
corrections, he claims that: ... Since the completion of this paper such a
proof has been found [Be64].
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In the short Introduction to [Be64], Bell reaffirms the same ideas, namely
that the result proven by him in this paper shows that: ... any such [hidden
variable] theory which reproduces exactly the quantum mechanical predictions
must have ... a grossly nonlocal structure.

The proof goes along the following scheme: Bell proves an inequality in
which, according to what he says (cf. statement after formula (1) in [Be64]):

... The vital assumption [2] is that the result B for particle 2 does not
depend on the setting a, of the magnet for particle 1, nor A on b.

The paper [2], mentioned in the above statement, is nothing but the Ein-
stein, Podolsky, Rosen paper [EPR35] and the locality issue is further em-
phasized by the fact that he reports the famous Einstein’s statement [Ein49]:
... But on one supposition we should, in my opinion, absolutely hold fast:
the real factual situation of the system S2 is independent of what is done with
the system S1, which is spatially separated from the former.

Stated otherwise: according to Bell, Bell’s inequality is a consequence of
the locality assumption.

It follows that a theory which violates the above mentioned inequality also
violates ... the vital assumption needed, according to Bell, for its deduction,
i.e. locality.

Since the experiments prove the violation of this inequality, Bell conclu-
des that quantum theory does not admit a local completion; in particular
quantum mechanics is a nonlocal theory. To use again Bell’s words:

the statistical predictions of quantum mechanics are incompatible with se-
parable predetermination ([Be64], p.199). Moreover this incompatibility has
to be understood in the sense that: in a theory in which parameters are added
to quantum mechanics to determine the results of individual measurements,
without changing the statistical predictions, there must be a mechanism whe-
reby the setting of one measuring device can influence the reading of another
instrument, howevere remote. Moreover, the signal involved must propagate
instantaneously,...

5 Critique of Bell’s “vital assumption”

An assumption should be considered “vital” for a theorem if, without it, the
theorem cannot be proved.
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To favor Bell, let us require much less. Namely let us agree to consider his
assumption vital if the theorem cannot be proved by taking as its hypothesis
the negation of this assumption.

If even this minimal requirement is not satisfied, then we must conclude
that the given assumption has nothing to do with the theorem.

Notice that Bell expresses his locality condition by the requirement that
the result B for particle 2 should not depend on the setting a, of the magnet
for particle 1 (cf. citation in the preceeding section). Let us denote M1

(M2) the space of all possible measurement settings on system 1 (2).

Theorem 2 For each unit vector x in the three dimensional euclidean space
(x ∈ R3, | x |= 1) let be given two random variables S

(1)
x , S

(2)
x (spin of

particle 1 (2) in direction x), defined on a space Ω with a probability P and
with values in the 2–point set {+1,−1}. Fix 3 of these unit vectors a, b, c
and suppose that the corresponding random variables satisfy the following
non locality condition [violating Bell’s vital assumption]: suppose that the
probability space Ω has the following structure:

Ω = Λ×M1 ×M2 (23)

so that, for some function F
(1)
a , F

(2)
a : Λ×M1 ×M2 → [−1, 1],

S(1)
a (ω) = F (1)

a (λ,m1,m2) (S(1)
a depends on m2) (24)

S(2)
a (ω) = F (2)

a (λ,m1,m2) (S(2)
a depends on m1) (25)

with m1 ∈ M1,m2 ∈ M2 and similarly for b and c. [nothing changes in the

proof if we add further dependences, for example F
(2)
a may depend on all the

S
(1)
x (ω) and F

(1)
a on all the S

(2)
x (ω)].

Then the random variables S
(1)
a , S

(2)
b , S

(1)
c satisfy the inequality

| 〈S(1)
a S

(2)
b 〉 − 〈S

(2)
b S(1)

c 〉 |≤ 1− 〈S(1)
a S(1)

c 〉 (26)

If moreover the singlet condition

〈S(1)
x · S(2)

x 〉 = −1 ; x = a, b, c (27)

is also satisfied, then Bell’s inequality holds in the form

| 〈S(1)
a S

(2)
b 〉 − 〈S

(2)
b S(1)

c 〉 |≤ 1 + 〈S(1)
a S(2)

c 〉 (28)
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Proof. The random variables S
(1)
a , S

(2)
b , S

(1)
c satisfy the assumptions of

Corollary (2.3) therefore (67), holds. If also condition (63) is satisfied then,
since the variables take values in the set {−1,+1}, with probability 1 one
must have

S(1)
x = −S(2)

x (x = a, b, c) (29)

and therefore 〈S(1)
a S

(1)
c ) = −〈S(1)

a S
(2)
c 〉. Using this identity, (67) becomes

(57). Summing up: Theorem 68 proves that Bell’s inequality is satisfied if

one takes as hypothesis the negation of his “vital assumption”. From this
we conclude that Bell’s “vital assumption” not only is not “vital” but in fact
has nothing to do with Bell’s inequality.

Remark. Using Lemma ?? below, we can allow that the observables
take values in [−1, 1] also in Theorem 68.

Remark. The above discussion is not a refutation of the Bell inequality:
it is a refutation of Bell’s claim that his formulation of locality is an essential
assumption for its validity: since the locality assumption is irrelevant for the
proof of Bell’s inequality it follows that this inequality cannot discriminate
between local and non local hidden variable theories, as claimed both in the
introduction and the conclusions of Bell’s paper.

In particular: Theorem 68 gives an example of situations in which:

(i) Bell’s locality condition is violated while his inequality is satisfied.
In a recent experiment with M. Regoli [AcRe99] we have produced exam-

ples of situations in which:
(ii) Bell’s locality condition is satisfied while his inequality is violated.

6 The role of the counterfactual argument in

Bell’s proof

Bell uses the counterfactual argument in an essential way in his proof because
it is easy to check that formula (??) in [Bell’64] paper is the one which
allows him to reduce, in the proof of his inequality, all consideration to the
A–variables (S

(1)
a in our notations, while Bell’s B–variables are the S

(2)
a in
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our notations). The pairs of chameleons (cf. section (10), as well as the
experiment of [AcRe99] provide a counterexample precisely to this formula.

7 Proofs of Bell’s inequality based on coun-

ting arguments

There is a widespread illusion to exorcize the above mentioned critiques by
restricting one’s considerations to results of measurements. The following
considerations show why this is an illusion.

The counting arguments, usually used to prove the Bell inequality are all
based on the following scheme. In the same notations used up to now, consi-
der N simultaneous measurements of the singlet pairs of observables (S1

a, S
2
b ),

(S2
b , S

1
c ), (S2

c , S
1
a) and one denotes Sjx,ν the results of the ν–th measurement

of Sjx (j = 1, 2, x = a, b, c, ν = 1, . . . , N). With these notations one can
calculate the empirical correlations on the samples, that is

1

N

∑
ν

S1
a,νS

2
b,ν = 〈S1

aS
2
b 〉 (30)

(and similarly for the other ones). In the Bell inequality, 3 such correlations
are involved.

〈S1
aS

2
b 〉 , 〈S2

bS
1
c 〉 , 〈S1

aS
2
c 〉 (31)

Thus in the three experiments observer 1 has to measure S1
a in the first and

third experiment and S1
c in the second, while observer 2 has to measure S2

b in
the first and second experiment and S1

c in the third. Therefore the directions
a and b can be chosen arbitrarily by the two observers and it is not necessary
that observer 1 is informed of the choice of observer 2 or conversely. However
the direction c has to be chosen by both observers and therefore at least
on this direction there should be a preliminary agreement among the two
observers. This preliminary information can be replaced it by a procedure
in which each observer chooses at will the three directions only those choices
are considered for which it happens (by chance) that the second choice of
observer 1 coincides with the third of observer 2 (cf. section (15) for further
discussion of this point). Whichever procedure has been chosen, after the
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results of the experiments one can compute the 3 empirical correlations

〈S(1)
a S

(2)
b 〉 =

1

N

N∑
j=1

S(1)
a (p

(1)
j )S

(2)
b (p

(1)
j ) (32)

〈S(2)
b S(1)

c 〉 =
1

N

N∑
j=1

S(1)
c (p

(2)
j )S

(2)
b (p

(2)
j ) (33)

〈S(1)
a S(2)

c 〉 =
1

N

N∑
j=1

S(1)
a (p

(3)
j )S(2)

c (p
(3)
j ) (34)

where p
(3)
j means the j–th point of the 3–d experiment etc... If we try to

apply the Bell argument directly to the empirical data given by the right
hand sides of (61), (67), (63), we meet the expression

1

N

N∑
j=1

S(1)
a (p

(1)
j )S

(2)
b (p

(1)
j )− 1

N

N∑
j=1

S(1)
c (p

(2)
j )S

(2)
b (p

(2)
j ) (35)

from which we immediately see that, if we try to apply Bell’s reasoning to
the empirical data, we are stuck at the first step because we find a sum of
terms of the type

S(1)
a (p

(1)
j )S

(2)
b (p

(1)
j )− S(1)

c (p
(2)
j )S

(2)
b (p

(2)
j ) (36)

to which the inequalities among numbers, of section (1), cannot be applied
because in general

S
(2)
b (p

(1)
j ) 6= S

(2)
b (p

(2)
j ) (37)

More explicitly: since the expression (x.) above is of the form

ab− b′c

with a, b, b′, c ∈ {±1}, the only possible upper bound for it is 2 and not 1−ac.
Even supposing that we, in order to uphold Bell’s thesis, can introduce a

cleaning operation [Ac98], (cf. [AcRe99]), which eliminates all the points in
which (8) is not satisfied, we would arrive to the inequality∣∣∣∣∣ 1

N

N∑
j=1

S(1)
a (p

(1)
j )S

(2)
b (p

(1)
j )− 1

N

N∑
j=1

S(1)
c (p

(2)
j )S

(2)
b (p

(2)
j )

∣∣∣∣∣ ≤ 1− 1

N

N∑
j=1

S(1)
a (p

(1)
j )S(1)

c (p
(2)
j )

(38)
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and, in order to deduce from this, something comparable with the experi-
ments we need to use the counterfactual argument, assessing that

S(1)
c (p

(2)
j ) = −S(2)

c (p
(2)
j ) (39)

But in the second experiment S
(2)
b and not S

(2)
c has been measured. Thus to

postulate the validity of (39) means to postulate that: the value assumed by

S
(2)
b in the second experiment is the same that we would have found if S

(2)
c and

not S
(2)
b had been measured. The chameleon effect provides a counterexample

to this statement.

8 The quantum probabilistic analysis

Given the results of section (5), (6), (7), it is then legitimate to ask:
if Bell’s vital assumption is irrelevant for the deduction of Bell’s inequa-

lity, which is the really vital assumption which guarantees the validity of this
inequality?

This natural question was first answered in [Ac81] and this result motiva-
ted the birth of quantum probability as something more than a mere noncom-
mutative generalization of probability theory; in fact a necessity motivated
by experimental data.

Theorem (2.3) has only two assumptions:
(i) that the random variables take values in the interval [−1,+1]
(ii) that the random variables are defined on the same probability space
Since we are dealing with spin variables, assumption (i) is reasonable.
Let us consider assumption (ii). This is equivalent to the claim that

the three probability measures Pab, Pac, Pcb, representing the distributions of
the pairs (S

(1)
a , S

(2)
b ), (S

(1)
c , S

(2)
b ), (S

(1)
a , S

(2)
c ) respectively, can be obtained by

restriction from a single probability measure P , representing the distribution
of the quadruple S

(1)
a , S

(1)
c , S

(2)
b , S

(2)
c .

This is indeed a strong assumption because, due to the incompatibility
of the spin variables along non parallel directions, the three correlations

〈S(1)
a S

(2)
b 〉 , 〈S(1)

c S
(2)
b 〉 , 〈S(1)

a S(2)
c 〉 (40)

can only be estimated in different, in fact mutually incompatible, series of
experiments. If we label each series of experiments by the corresponding
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pair (i.e. (a, b), (b, c), (c, a)), then we cannot exclude the possibility that
also the probability measure in each series of experiments will depend on
the corresponding pair. In other words, each of the measures Pa,b, Pb,c, Pc,a
describes the joint statistics of a pair of commuting observables (S

(1)
a , S

(2)
b ),

(S
(1)
c , S

(2)
b ), (S

(1)
a , S

(2)
c ) and there is no a priori reason to postulate that all

these joint distributions for pairs can be deduced from a single distribution
for the quadruple {S(1)

a , S
(1)
c , S

(2)
b , S

(2)
c }.

We have already proved in Theorem ?? that this strong assumption im-
plies the validity of the Bell inequality. Now let us prove that it is the truly
vital assumption for the validity of this inequality, i.e. that, if this assump-
tion is dropped, i.e. if no single distribution for quadruples exist, then it is
an easy exercise to construct counterexamples violating Bell’s inequality. To
this goal one can use the following lemma:

Lemma 4 Let be given three probability measures Pab, Pac, Pcb on a given
(measurable) space (Ω,F) and let S

(1)
a , S

(1)
c , S

(2)
b , S

(2)
d be functions, defined

on (Ω,F) with values in the interval [−1,+1], and such that the probability

measure Pab (resp. Pcb, Pac) is the distribution of the pair (S
(1)
a , S

(2)
b ) (resp.

(S
(1)
c , S

(2)
b ), (S

(1)
a , S

(2)
c )). For each pair define the corresponding correlation

κab := 〈S(1)
a , S

(2)
b 〉 :=

∫
S(1)
a S

(2)
b dPab

and suppose that, for ε, ε′ = ±, the joint probabilities for pairs

P εε′

x,y := P (S(1)
x = ε ; S(2)

y = ε′)

satisfy:
P++
xy = P−−xy ; P+−

xy = P−+
xy (41)

P+
x = P−x = 1/2 (42)

then the Bell inequality
|κab − κbc| ≤ 1− κac (43)

is equivalent to

|P++
ab − P

++
bc |+ P++

ac ≤
1

2
(44)

15



Proof. The inequality (3) is equivalent to

|2P++
ab − 2P+−

ab − 2P++
bc + 2P+−

bc | ≤ 1− 2P++
ac + 2P+−

ac (45)

Using the identity (equivalent to (69))

P+−
xy =

1

2
− P++

xy (46)

the left hand side of (4) becomes the modulus of

2(P++
ab −P

+−
ab )−2(P++

bc −P
+−
bc ) = 2

(
P++
ab −

1

2
+ P++

ab

)
−2

(
P++
bc −

1

2
+ P++

bc

)
= 4(P++

ab − P
++
bc ) (47)

and, again using (5), the right hand side of (67) is equal to

1− 2

(
P++
ac −

1

2
+ P++

ac

)
= 2− 4P++

ac (48)

Summing up, (61) is equivalent to

|P++
ab − P

++
bc | ≤

1

2
− P++

ac (49)

which is (3a) Corollary (2) . There exist triples of Pab, Pac, Pcb on the

4–point space {+1,−1} × {+1,−1} which satisfy conditions (68), (69) of
Lemma 68 and are not compatible with any probability measure P on the
6–point space {+1,−1} × {+1,−1} × {+1,−1}.

Proof. Because of conditions (68), (69) the probability measures Pab, Pac, Pcb
are uniquely determined by the three numbers

P++
ab , P

++
ac , P

++
cb ∈ [0, 1] (50)

Thus, if we choose these three numbers so that the inequality (44) is not
satisfied, the Bell inequality (61) cannot be satisfied because of Lemma 68.
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9 The realism of ballot boxes and the corre-

sponding statistics

The fact that there is no a priori reason to postulate that the joint distribu-
tions of the pairs (S

(1)
a , S

(2)
b ), (S

(1)
c , S

(2)
b ), (S

(1)
a , S

(2)
c ) can be deduced from a

single distribution for the quadruple S
(1)
a , S

(1)
c , S

(2)
b , S

(2)
c , does not necessarily

mean that such a common joint distribution does not exist.
On the contrary, in several physically meaningful situations, we have good

reasons to expect that such a joint distribution should exist even if it might
not be accessible to direct experimental verification.

This is a simple consequence of the so–called hypothesis of realism which
is justified whenever we are entitled to believe that the results of our mea-
surements are pre–determined. In the words of Bell: Since we can predict in
advance the result of measuring any chosen component of σ2, by previously
measuring the same component of σ1, it follows that the result of any such
measurement must actually be predetermined.

Consider for example a box containing pairs of balls. Suppose that the
experiments allow to measure either the color or the weight or the material
of which each ball is made of, but the rules of the game are that on each ball
only one measurement at a time can be performed. Suppose moreover that
the experiments show that, for each property, only two values are realized
and that, whenever a simultaneous measurement of the same property on
the two elements of a pair is performed, the resulting answers are always
discordant. Up to a change of convenction and in appropriate units, we
can always suppose that these two values are ±1 and we shall do so in the
following.

Then the joint distributions of pairs (of properties relative to different
balls) are accessible to experiment, but those of triples, or quadruples, are
not.

Nevertheless, it is reasonable to postulate that, in the box, there is a
well defined (although purely Platonic, in the sense of not being accessible
to experiment) number of balls with each given color, weight and material.
These numbers give the relative frequencies of triples of properties for each
element of the pair hence, using the perfect anticorrelation, a family of joint
probabilities for all the possible sextuples. More precisely, due to the perfect
anticorrelation, the relative frequency of the triples of properties

[S(1)
a = a1] , [S

(1)
b = b1] , [S(1)

c = c1]
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where a1, b1, c1 = ±1 are equal to the relative frequency of the sextuples of
properties

[S(1)
a = a1] , [S

(1)
b = b1] , [S(1)

c = c1] , [S(2)
a = −a1] , [S

(2)
b = −b1] , [S(2)

c = −c1]

and, since we are confining ourselves to the case of 3 properties and 2 parti-
cles, the above ones, when a1, b1, c1 vary in all possible ways in the set {±1},
are all the possible configurations in this situation, the counterfactural argu-
ment is applicable and in fact we have used it to deduce the joint distribution
of sextuples from the joint distributions of triples.

10 The realism of chameleons and the corre-

sponding statistics

According to the quantum probabilistic interpretation, what Einstein, Po-
dolsky, Rosen, Bell and several other who have discussed this topic, call the
hypothesis of realism should be called in a more precise way the hypothesis
of the ballot box realism as opposed to hypothesis of the chameleon realism.

The point is that, according to the quantum probabilistic interpretation,
the term predetermined should not be confused with the term realized a priori,
which has been discussed in section (9.): it might be conditionally dediced
according to the scheme: if such and such will happen, I will react so and
so....

The chameleon provides a simple example of this distinction: a chameleon
becomes deterministically green on a leaf and brown on a log. In this sense
we can surely claim that its color on a leaf is predetermined. However this
does not mean that the chameleon was green also before jumping on the leaf.

The chameleon metaphora describes a mechanism which is perfectly local,
even deterministic and surely classical and macroscopic; moreover there are
no doubts that the situation it describes is absolutely realistic. Yet this
realism, being different from the ballot box realism, allows to render free from
metaphysics statements of the orthodox interpretation such as: the act of
measurement creates the value of the measured observable. To many this
looks metaphysic or magic; but load how natural it sounds when you think
of the color of a chameleon.
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Finally, and most important for its implications relatively to the EPR
argument, the chameleon realism provides a simple and natural countere-
xample of a situation in which the results are predetermined however the
counterfactual argument is not applicable.

Imagine in fact a box in which there are many pairs of chameleons. In
each pair there is exactly an healthy one, which becomes green on a leaf and
brown on a log, and a mutant one, which becomes brown on a leaf and green
on a log; moreover exactly one of the chameleons in each pair weights 100
grams and exactly one 200 grams. A measurement consists in separating the
members of each pair, each one in a smaller box, and in performing one and
only one measurement on each member of each pair.

The color on the leaf, color on the log, and weight are 2–valued observables
(because we do not know a priori if we are measuring the healthy or the
mutant chameleon). Thus, with respect to the observables: color on the leaf
color on the long and weight the pairs of chameleons behave exactly as EPR
pairs: whenever the same observable is measured on both elements of a pair,
the results are opposite. However, suppose I measure the color on the leaf,
of one element of a pair and the weight of the other one and suppose the
answers I find are: green and 100 grams. Can I conclude that the second
element of the pair is brown and weights 100 grams? Clearly not because
there is no reason to believe that the second member of the pair, of which
the weight was measured while in a box, was also on a leaf.

From this point of view the measurement interaction enters the very de-
finition of an observable. However also in this interpretation, which is more
similar to the quantum mechanical situation, the counterfactual argument
cannot be applied because it amounts to answer “brown” to the question:
which is the color on the leaf, if I have measured the weight and if I know
that the chameleon is the mutant one? (this because the measurement of the
other one gave green on the leaf). But this answer is not correct, because it
could well be that inside the box there is a leaf and the chameleon is inte-
racting with it while I am measuring its weight, but it could also be that it
is interacting with a log, also contained inside the box in which case, being
a mutant, it would be green. Therefore if we can produce an example of a

2-particle system in which the Heisenberg evolution of each particle’s obser-
vable satisfies Bell’s locality condition, but the Schroedinger evolution of the
state, i.e. the expectation value 〈·〉, depends on the pair (a, b) of measured
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observables, we can claim that this counterexample abides with the same
definition of locality as Bell’s theorem.

11 Bell’s inequalities and the chamaleon ef-

fect

Definition 2 Let S be a physical system and O a family of observable quan-
tities relative to this system. We say that the it chamaleon effect is realized
on S if, for any measurement M of an observable A ∈ O, the dynamical
evolution of S depends on the observable A. If D denotes the state space of
S, this means that the change of state from the beginning to the end of the
experiment is described by a map (a one–parameter group or semigroup in
the case of continuous time)

TA : D → D

Remark. The explicit form of the dependence of TA on A depends on
both the system and the measurement and many concrete examples can be
constructed. An example in the quantum domain is discussed in [Ac98] and
the experiment of [AcRe99] realizes an example in the classical domain.

Remark If the system S is composed of two sub–systems S1 and S2,
we can also consider the case in which the evolutions of the two subsystems
are different in the sense that, for system 1, we have one form of functional
dependence, T

(1)
A , of the evolution associated to the observable A and, for

system 2, we have another form of functional dependence, T
(2)
A . In the ex-

periment of [AcRe99], the state space is the unit disk D in the plane, the
observables are parametrized by angles in [0, 2π) (or equivalently by unit

vectors in the unit circle) and, for each observable S
(1)
α of system 1

T (1)
α := Rα

and, for each observable S
(2)
α of system 2

T (2)
α := Rα+π

where Rα denotes (counterclockwise) rotation of an angle α. Let us consider
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Bell’s inequalities by assuming that a chamaleon effect

(S(1)
a , S

(2)
b ) 7→ (S(1)

a ◦ T (1)
a , S

(2)
b ◦ T

(2)
b )

is present. Denoting E the common initial state of the composite system
(1, 2), (e.g. singlet state), the state at the end of the measurement will be

E ◦ (S(1)
a ◦ T (1)

a , S
(2)
b ◦ T

(2)
b )

Now replace S
(j)
x by:

S̃(j)
x := S(j)

x ◦ T (j)
x

Since the S̃
(j)
x take values ±1, we know from Theorem (2.3) that, if we postu-

late the existence of joint probabilities for the triple S̃
(1)
a , S̃

(2)
b , S̃

(1)
c , compatible

with the two correlations E(S̃
(1)
a S̃

(2)
b ), E(S̃

(1)
c S̃

(2)
b ), then the inequality

|E(S̃(1)
a S̃

(2)
b )− E(S̃(1)

c S̃
(2)
b )| ≤ 1− E(S̃(1)

a S̃(1)
c )

holds and, if we also have the singlet condition

E(S(1)
c (T (1)

c p)S(2)
c (T (2)

c p)) = −1 (51)

then a.e.
S̃(1)
c = −S̃(2)

c

and we have the Bell’s inequality. Thus, if we postulate the same probability
space, even the chamaleon effect alone is not sufficient to guarantee violation
of the Bell’s inequality.

Therefore the fact that the three experiments are done on different and
incompatible samples must play a crucial role.

As far as the chameleon effect is concerned, let us notice that, in the above
statement of the problem the fact that we use a single initial probability
measure E is equivalent to postulate that, at time t = 0 the three pairs of
observables

(S(1)
a , S

(2)
b ) , (S(1)

c , S
(2)
b ) , (S(1)

a , S(1)
c )

admit a common joint distribution, in fact E.
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12 Physical implausibility of Bell’s argument

In this section we show that, combining the chameleon effect with the fact
that the three experiments refer to different samples, then even in very simple
situations, no cleaning conditions can lead to a proof of the Bell’s inequality.

If we try to apply Bell’s reasoning to the empirical data, we have to start
from the expression∣∣∣∣∣ 1

N

∑
j

S(1)
a (T (1)

a pIj )S
(2)
b (T

(2)
b pIj )−

1

N

∑
j

S(1)
c (T (1)

c pIIj )S
(2)
b (T

(2)
b pIIj )

∣∣∣∣∣ (52)

which we majorize by

1

N

∑
j

∣∣∣S(1)
a (T (1)

a pIj )S
(2)
b (T

(2)
b pIj )− S(1)

c (T (1)
c pIIj )S

(2)
b (T

(2)
b pIIj )

∣∣∣ (53)

But, if we try to apply the inequality among numbers to the expression∣∣∣S(1)
a (T (1)

a pIj )S
(2)
b (T

(2)
b pIj )− S(1)

c (T (1)
c pIIj )S

(2)
b (T

(2)
b pIIj )

∣∣∣ (54)

we see that we are not dealing with the situation covered by Corollary (1.2),
i.e.

|ab− cb| ≤ 1− ac (55)

because, since
S

(2)
b (T

(2)
b pIj ) 6= S

(2)
b (T

(2)
b pIIj ) (56)

the left hand side of (4) must be replaced by

|ab− cb′| (57)

whose maximum, for a, b, c, b′ ∈ [−1,+1] is 2 and not 1− ac.
Bell’s implicit assumption of the single probability space is equivalent to

the postulate that, for each j = 1, . . . , N

pIj = pIIj (58)

Physically this means that:
the hidden parameter in the first experiment is the same as the hidden

parameter in the second experiment
This is surely a very implausible assumption.
Notice however that, without this assumption, Bell’s argument cannot be

carried over and we cannot deduce the inequality because we must stop at
equation (69).
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13 The role of the single probability space in

CHSH’s proof

Clauser, Horne, Shimony, Holt [ClHo69] introduced the variant (??) of the
Bell inequality for quadruples (a, b), (a, b′), (a′, b), (a′, b′) which is based on
the following inequality among numbers

| ab+ ab′ + a′b− a′b′ |≤ 2 (59)

Section (1) already contains a proof of (68). For a, b, b′, a ∈ [−1, 1], a direct
proof follows from

| b+ b′ | + | b− b′ |≤ 2 (60)

because

| ab+ab′+a′b−a′b′ |=| a(b+b′)+a′(b−b′) |≤| a | · | b+b′ | + | a′ | · | b−b′ |≤| b+b′ | + | b−b′ |≤ 2

The proof of (69) is obvious because it is equivalent to

| b+ b′ |2 + | b− b′ |2= b2 + b′2 + 2bb′ + b2 + b′2 − 2bb′ = 2b2 + 2b′2 ≤ 4

which is identically satisfied (cf. also Lemma ??). Remark (1) Notice that

an inequality of the form

| a1b1 + a2b
′
2 + a′3b3 − a′4b′4 |≤ 2 (61)

would be obviously false. In fact, for example the choice

a1 = b1 = a2 = b′2 = a′3 = b3 = b′4 = 1 ; a′4 = −1

would give
| a1b1 + a2b

′
2 + a′3b3 − a′4b′4 |= 4

That is: for the validity of (68) it is absolutely essential that the number a
is the same in the first and the second term and similarly for a′ in the 3–d
and the 4–th, b′ in the 2–d and the 4–th, b in the first and the 3–d.

This inequality among numbers can be extended to pairs of random
variables by introducing the following postulates:
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(P1) Instead of four numbers a, b, b′, a ∈ [−1, 1], one considers four
functions

S(1)
a , S

(2)
b , S

(1)
a′ , S

(2)
b′

all defined on the same space Λ (whose points are called hidden parameters)
and with values in [−1, 1]. (P2) One postulates that there exists a probability
measure P on Λ which defines the joint distribution of each of the following
four pairs of functions

(S(1)
a , S

(2)
b ), (S(1)

a , S
(2)
b′ ), (S

(1)
a′ , S

(2)
b ), (S

(1)
a′ , S

(2)
b′ ) (62)

Remark (2) Notice that (P2) automatically implies that the joint distribu-
tions of the four pairs of functions can be deduced from a joint distribution
of the whole quadruple, i.e. the existence of a single Kolmogorov model for
these four pairs. With these premises, for each λ ∈ Λ one can apply the

inequality (1) to the four numbers

S(1)
a (λ), S

(2)
b (λ), S

(1)
a′ (λ), S

(2)
b′ (λ)

and deduce that

| S(1)
a (λ)S

(2)
b (λ) + S(1)

a (λ)S
(2)
b′ (λ) + S

(1)
a′ (λ)S

(2)
b (λ)− S(1)

a′ (λ)S
(2)
b′ (λ) |≤ 2 (63)

From this, taking P–averages, one obtains

| 〈S(1)
a S

(2)
b 〉+ 〈S(1)

a S
(2)
b′ 〉+ 〈S(1)

a′ S
(2)
b 〉 − 〈S

(1)
a′ S

(2)
b′ 〉 |= (64)

|
∫ (

S(1)
a (λ)S

(2)
b (λ)+S(1)

a (λ)S
(2)
b′ (λ)+S

(1)
a′ (λ)S

(2)
b (λ)−S(1)

a′ (λ)S
(2)
b′ (λ)

)
dP (λ) |≤

(65)

≤
∫
| S(1)

a (λ)S
(2)
b (λ)+S(1)

a (λ)S
(2)
b′ (λ)+S

(1)
a′ (λ)S

(2)
b (λ)−S(1)

a′ (λ)S
(2)
b′ (λ) | dP (λ) ≤ 2

(66)
Remark (3). Notice that in the step from (64) to (65) we have used in an

essential way the existence of a joint distribution for the whole quadruple, i.e.
the fact that all these random variales can be realized in the same probability
space. In EPR type experiments we are interested in the case in which the

four pairs (a, b), (a, b′), (a′, b), (a′, b′) come from four mutually incompatible
experiments. Let us assume that there is a hidden parameter, determining
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the result of each of these experiments. This means that we interpret the
number S

(1)
a (λ) as the value of the spin of particle 1 in direction a, determined

by the hidden parameter λ.
There is obviously no reason to postulate that the hidden parameter, de-

termining the result of the first experiment is exactly the same one which
determines the result of the second experiment. However, when CHSH consi-
der the quantity (63), they are implicitly doing the much stronger assumption
that the same hidden parameter λ determines the results of all the four ex-
periments. This assumption is quite unreasonable from the physical point of
view and in any case it is a much stronger assumption than simply postula-
ting the existence of hidden parameters. The latter assumption would allow
CHSH only to consider the expression

S(1)
a (λ1)S

(2)
b (λ1)+S(1)

a (λ2)S
(2)
b′ (λ2)+S

(1)
a′ (λ3)S

(2)
b (λ3)−S(1)

a′ (λ4)S
(2)
b′ (λ4) (67)

and, as shown in Remark (1.) above the maximum of this expression is not
2 but 4 and this does not allow to deduce the Bell inequality.

14 The role of the counterfactual argument

in CHSH’s proof

Contrarily to the original Bell’s argument, the CHSH proof of the Bell ine-
quality does not use explicitly the counterfactual argument. Since one can
perform experiments also on quadruples, rather than on triples, as originally
proposed by Bell, has led some authors to claim that the counterfactual argu-
ment is not essential in the deduction of the Bell inequality. However we have
just seen in section (7.) that the hidden assumption as in Bell’s proof, i.e.
the realizability of all the random variales involved in the same probability
space, is also present in the CHSH argument. The following lemma sho-
ws that, under the singlet assumption, the conclusion of the counterfactual
argument follows from the hidden assumption of Bell and of CHSH.

Lemma 5 If f and g are random variables defined on a probability space
(Λ, P ) and with values in [−1, 1], then

〈fg〉 :=

∫
Λ

fgdP = −1
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if and only if
P (fg = −1) = 1

Proof. If P (fg > −1) > 0, then∫
Λ

fgdP = −P (fg = −1)−
∫
fg>−1

|fg|dP > −P (fg = −1)−P (fg > −1) > −1

Corollary (2). Suppose that all the random variales in (x.3) are realized in

the same probability space. Then, if the singlet condition:

〈S(1)
x S(2)

x 〉 = −1 (68)

is satisfied, then the condition

S(1)
x = −S(2)

x (69)

(i.e. formula (13) in Bell’s ’64 paper) is true almost everywhere.

Proof. Follows from Lemma (1) with the choice f = S
(1)
x , g = S

(2)
x .

Summing up: if you want to compare the predictions of a hidden variable

theory with quantum theory in the EPR experiment (so that at least we
admit the validity of the singlet law) then the hidden assumption, of rea-
lizability of all the random variables in (61) in the same probability space,
(without which Bell’s inequality cannot be proved) implies the same conclu-
sion of the counterfactual argument. Stated otherwise: the counterfactual
argument is implicit when you postulate the singlet condition and the reali-
zability on a single probability space. It does not matter if you use triples or
quadruples.

15 Physical difference between the CHSH’s

and the original Bell’s inequalities

In the CHSH scheme:

(a, b) , (a′, b′) , (a, b′) , (a′, b′)
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the agreement required by the experimenters is the following:
– 1 will measures the same observable in experiments I and III, and the

same observable in experiments II and IV;
– 2 will measure the same observable in experiments I and II, and the

same observable in experiments III and IV.
Here there is no restriction a priori on the choice of the observables to be

measured.
In the Bell scheme the experimentalists agree that:
– 1 measures the same observable in experiments I and III,
– 2 measures the same observable in experiments I and II
– 1 and 2 choose a priori, i.e. before the experiment begins, a direction c

and agree that 1 will measure spin in direction c in experiment II and 2 will
measure spin in direction c in experiment III (strong agreement)

The strong agreement can be replaced by the following (weak agreement):
– 1 and 2 choose a priori, i.e. before the experiment begins, a finite set of

directions c1, . . . , cK and agree that 1 will measure spin in a direction choosen
randomly among the directions c1, . . . , cK in experiment II and 2 will do the
same in experiment III

In this scheme there is an a priori restriction on the choice of some of the
observables to be measured.

If the directions, fixed a priori in the plane, are K, then the probability
of a coincidence, corresponding to a totally random (equiprobable) choice, is

P (x
(1)
II = x

(2)
III) =

K∑
α=1

(x
(1)
II = α;x

(2)
III = α) =

K∑
α=1

1

K2
=

1

K

This shows that, contrarily than in the CHSH scheme, the choice has to
be restricted to a finite number of possibilities otherwise the probability of
coincidence will be zero.

From this point of view we can claim that the Clauser, Horne, Shimony,
Holt formulation of Bell’s inequalities realize an improvement with respect
to the original Bell’s formulation.
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