2,489 research outputs found

    Opinion formation models based on game theory

    Get PDF
    A way to simulate the basic interactions between two individuals with different opinions, in the context of strategic game theory, is proposed. Various games are considered, which produce different kinds of opinion formation dynamics. First, by assuming that all individuals (players) are equals, we obtain the bounded confidence model of continuous opinion dynamics proposed by Deffuant et al. In such a model a tolerance threshold is defined, such that individuals with difference in opinion larger than the threshold can not interact. Then, we consider that the individuals have different inclinations to change opinion and different abilities in convincing the others. In this way, we obtain the so-called ``Stubborn individuals and Orators'' (SO) model, a generalization of the Deffuant et al. model, in which the threshold tolerance is different for every couple of individuals. We explore, by numerical simulations, the dynamics of the SO model, and we propose further generalizations that can be implemented.Comment: 18 pages, 4 figure

    The evolutionary status of the white dwarf companion of the binary pulsar PSR J1713+0747

    Get PDF
    Splaver and coworkers have measured the masses of the white dwarf and the neutron star components of the PSR J1713+0747 binary system pair by Shapiro Delay. We attempt to find the original configuration of this system performing a set of binary evolution calculations to simultaneously account for the masses of both stars and the orbital period. We considered initial masses of 1.5 and 1.4 \msun for the normal (donor) and the neutron star, respectively. We assumed two metallicity values (Z = 0.010 and 0.020), and an initial orbital period near 3 days. We assume that the neutron star is only able to retain \lesssim 0.10 of the matter transferred by the donor star. Calculations were performed employing our binary hydro code that handles the mass transfer rate in a fully implicit way together with state-of-the-art physical ingredients, diffusion and a non-grey atmospheres. We compare the structure of the resulting white dwarfs with the characteristic age of PSR J1713+0747 finding a nice agreement with observations by Lundgren et al. especially for the case of a donor star with Z= 0.010. This result indicates that the evolution of this kind of binary system is well understood. The models predict that, due to diffusion, the atmosphere of the white dwarf is an almost hydrogen-pure one. We find that such structures are unable to account for the colours measured by Lundgren et al. within their error bars. Thus, some discrepances in the white dwarf emergent radiation remain to be explained

    A Method to Find Community Structures Based on Information Centrality

    Full text link
    Community structures are an important feature of many social, biological and technological networks. Here we study a variation on the method for detecting such communities proposed by Girvan and Newman and based on the idea of using centrality measures to define the community boundaries (M. Girvan and M. E. J. Newman, Community structure in social and biological networks Proc. Natl. Acad. Sci. USA 99, 7821-7826 (2002)). We develop an algorithm of hierarchical clustering that consists in finding and removing iteratively the edge with the highest information centrality. We test the algorithm on computer generated and real-world networks whose community structure is already known or has been studied by means of other methods. We show that our algorithm, although it runs to completion in a time O(n^4), is very effective especially when the communities are very mixed and hardly detectable by the other methods.Comment: 13 pages, 13 figures. Final version accepted for publication in Physical Review

    Heavy X-ray obscuration in the most-luminous galaxies discovered by WISE

    Get PDF
    Hot Dust-Obscured Galaxies (Hot DOGs) are hyperluminous (L81000μm>1013LL_{\mathrm{8-1000\,\mu m}}>10^{13}\,\mathrm{L_\odot}) infrared galaxies with extremely high (up to hundreds of K) dust temperatures. The sources powering both their extremely high luminosities and dust temperatures are thought to be deeply buried and rapidly accreting supermassive black holes (SMBHs). Hot DOGs could therefore represent a key evolutionary phase in which the SMBH growth peaks. X-ray observations can be used to study their obscuration levels and luminosities. In this work, we present the X-ray properties of the 20 most-luminous (Lbol1014LL_{\mathrm{bol}}\gtrsim10^{14}\, L_\odot) known Hot DOGs at z=24.6z=2-4.6. Five of them are covered by long-exposure (107010-70 ks) Chandra and XMM-Newton observations, with three being X-ray detected, and we study their individual properties. One of these sources (W0116-0505) is a Compton-thick candidate, with column density NH=(1.01.5)×1024cm2N_H=(1.0-1.5)\times10^{24}\,\mathrm{cm^{-2}} derived from X-ray spectral fitting. The remaining 15 Hot DOGs have been targeted by a Chandra snapshot (3.1 ks) survey. None of these 15 is individually detected; therefore we applied a stacking analysis to investigate their average emission. From hardness-ratio analysis, we constrained the average obscuring column density and intrinsic luminosity to be logNH[cm2]>23.5N_H\,\mathrm{[cm^{-2}]}>23.5 and LX1044ergcm2s1L_X\gtrsim10^{44}\,\mathrm{erg\,cm^{-2}\,s^{-1}}, which are consistent with results for individually detected sources. We also investigated the LXL6μmL_X-L_{6\mu\mathrm{m}} and LXLbolL_X-L_{bol} relations, finding hints that Hot DOGs are typically X-ray weaker than expected, although larger samples of luminous obscured QSOs are needed to derive solid conclusions.Comment: MNRAS, accepted 2017 November 29 . Received 2017 November 29 ; in original form 2017 October 11. 15 pages, 6 figure

    Power-Law Time Distribution of Large Earthquakes

    Full text link
    We study the statistical properties of time distribution of seimicity in California by means of a new method of analysis, the Diffusion Entropy. We find that the distribution of time intervals between a large earthquake (the main shock of a given seismic sequence) and the next one does not obey Poisson statistics, as assumed by the current models. We prove that this distribution is an inverse power law with an exponent μ=2.06±0.01\mu=2.06 \pm 0.01. We propose the Long-Range model, reproducing the main properties of the diffusion entropy and describing the seismic triggering mechanisms induced by large earthquakes.Comment: 4 pages, 3 figures. Revised version accepted for publication. Typos corrected, more detailed discussion on the method used, refs added. Phys. Rev. Lett. (2003) in pres

    Linking black-hole growth with host galaxies: The accretion-stellar mass relation and its cosmic evolution

    Full text link
    Previous studies suggest that the growth of supermassive black holes (SMBHs) may be fundamentally related to host-galaxy stellar mass (MM_\star). To investigate this SMBH growth-MM_\star relation in detail, we calculate long-term SMBH accretion rate as a function of MM_\star and redshift [BHAR(M,z)\overline{\rm BHAR}(M_\star, z)] over ranges of log(M/M)=9.5–12\log(M_\star/M_\odot)=\text{9.5--12} and z=0.4–4z=\text{0.4--4}. Our BHAR(M,z)\overline{\rm BHAR}(M_\star, z) is constrained by high-quality survey data (GOODS-South, GOODS-North, and COSMOS), and by the stellar mass function and the X-ray luminosity function. At a given MM_\star, BHAR\overline{\rm BHAR} is higher at high redshift. This redshift dependence is stronger in more massive systems (for log(M/M)11.5\log(M_\star/M_\odot)\approx 11.5, BHAR\overline{\rm BHAR} is three decades higher at z=4z=4 than at z=0.5z=0.5), possibly due to AGN feedback. Our results indicate that the ratio between BHAR\overline{\rm BHAR} and average star formation rate (SFR\overline{\rm SFR}) rises toward high MM_\star at a given redshift. This BHAR/SFR\overline{\rm BHAR}/\overline{\rm SFR} dependence on MM_\star does not support the scenario that SMBH and galaxy growth are in lockstep. We calculate SMBH mass history [MBH(z)M_{\rm BH}(z)] based on our BHAR(M,z)\overline{\rm BHAR}(M_\star, z) and the M(z)M_\star(z) from the literature, and find that the MBHM_{\rm BH}-MM_\star relation has weak redshift evolution since z2z\approx 2. The MBH/MM_{\rm BH}/M_\star ratio is higher toward massive galaxies: it rises from 1/5000\approx 1/5000 at logM10.5\log M_\star\lesssim 10.5 to 1/500\approx 1/500 at logM11.2\log M_\star \gtrsim 11.2. Our predicted MBH/MM_{\rm BH}/M_\star ratio at high MM_\star is similar to that observed in local giant ellipticals, suggesting that SMBH growth from mergers is unlikely to dominate over growth from accretion.Comment: 27 pages, 21 figures, 2 tables; MNRAS accepte

    Accuracy of Plateau Pressure and Stress Index to Identify Injurious Ventilation in Patients with Acute Respiratory Distress Syndrome.

    Get PDF
    BACKGROUND: Guidelines suggest a plateau pressure (PPLAT) of 30 cm H(2)O or less for patients with acute respiratory distress syndrome, but ventilation may still be injurious despite adhering to this guideline. The shape of the curve plotting airway pressure versus time (STRESS INDEX) may identify injurious ventilation. The authors assessed accuracy of PPLAT and STRESS INDEX to identify morphological indexes of injurious ventilation. METHODS: Indexes of lung aeration (computerized tomography) associated with injurious ventilation were used as a "reference standard." Threshold values of PPLAT and STRESS INDEX were determined assessing the receiver-operating characteristics ("training set," N = 30). Accuracy of these values was assessed in a second group of patients ("validation set," N = 20). PPLAT and STRESS INDEX were partitioned between respiratory system (Pplat,Rs and STRESS INDEX,RS) and lung (PPLAT,L and STRESS INDEX,L; esophageal pressure; "physiological set," N = 50). RESULTS: Sensitivity and specificity of PPLAT of greater than 30 cm H(2)O were 0.06 (95% CI, 0.002-0.30) and 1.0 (95% CI, 0.87-1.00). PPLAT of greater than 25 cm H(2)O and a STRESS INDEX of greater than 1.05 best identified morphological markers of injurious ventilation. Sensitivity and specificity of these values were 0.75 (95% CI, 0.35-0.97) and 0.75 (95% CI, 0.43-0.95) for PPLAT greater than 25 cm H(2)O versus 0.88 (95% CI, 0.47-1.00) and 0.50 (95% CI, 0.21-0.79) for STRESS INDEX greater than 1.05. Pplat,Rs did not correlate with PPLAT,L (R(2) = 0.0099); STRESS INDEX,RS and STRESS INDEX,L were correlated (R(2) = 0.762). CONCLUSIONS: The best threshold values for discriminating morphological indexes associated with injurious ventilation were Pplat,Rs greater than 25 cm H(2)O and STRESS INDEX,RS greater than 1.05. Although a substantial discrepancy between Pplat,Rs and PPLAT,L occurs, STRESS INDEX,RS reflects STRESS INDEX,L
    corecore