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Abstract. The volumetric growth of biological media accounts for the accumulation of resid-
ual stresses as the natural consequence of material elastic compatibilization. Stress gradients
and internal pressures are known also to directly steer some key biological mechanisms such as
nutrient walkways and proliferation progress as well as some physiological processes activated
by cells mechanotrasduction. Also, in pathological cases like those of solid tumors, mechani-
cal compression can both induce metastasis and constitute a mechanical hurdle to therapeutic
drugs infiltration. As a consequence, evaluation of in situ stresses and the mechanical charac-
terization of biological grown media has become prominent to both furnish important insights in
the treatment of some diseases and conceive newly bio-inspired implantable devices mimicking
the elastic properties of the host tissue to limit the stress shielding phenomena and drive a favor-
able process of tissue healing and remodeling. The way in which heterogeneous growth-induced
finite stretch and residual stress determine the evolution of tissue properties through the direct
modification of material constants is here analyzed by means of a small-on-large approach, in
order to capture some relevant mechanical aspects of tissue remodeling, mainly investigating
the development of stress-induced anisotropies, growth-driven variations of overall stiffness as
well as morphological changes and local instabilities due to growth.
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1 INTRODUCTION

Volumetric growth of biological tissues is generally accompanied by adaptation processes
that continually change their structure and affect the evolution of their mechanical properties,
also in response to the tissues activity and to the host environment with whom they exchange
mechanical as well as physical and chemical stimuli [1]. Mass accretion and structural remod-
eling, which are treated in biomechanics through finite deformations theory according to the
most of the concerning literature [2, 3], can in fact trigger different mechanical and biochemi-
cal processes that work in a synergistic manner and allow the biological material to adequately
react to mutable environmental conditions. In this sense, soft tissues can be seen as compos-
ite materials in which living constituents are responsible for the heterogeneous and dynamical
properties, so that the interplay of the growth, remodeling and eventually repair processes with
the mechanical stresses becomes critical to discriminate the overall macroscopic behavior and
the functionality of the tissue. Among these factors, the accumulation of growth-induced (resid-
ual) stress and the evaluation of the grown tissue properties cover a great deal of interest from
a biomechanical standpoint in order to characterize material evolution. In fact, residual stress
—defined as the resident self-balanced stress field in a free traction body which is typically
attributed to the incompatibility of growth deformation [4]— together with the growth-induced
compatible deformation promote an alteration of the actual tissue elastic properties. On the
other hand, growth-associated stresses can negatively compromise the physiology of the tissue.
It is the case, for instance, of solid tumors, within which compression seems to concur in many
physiological events associated to their development, such as the formation of hypoxic regions
and vascular collapse as well as peripheral migration and lymphangiogenesis [5, 6]. The role
of stress gradients in biological media is in fact pivotal in promoting cells reconfiguration and
motility and, also steer Fick-type diffusion of chemicals dissolved within the fluid phase as
well as macromolecules extravasation throughout the interstitium. A wide literature is in fact
dedicated to the investigation of tumor mechanical micro-environment in order to establish the
nature as well as the causes and the effects of intratumoral residual stresses [4, 7, 8, 5], and
are aimed also to propose some mechanically-based hypotheses to prospect intratumoral drug
inflow as well as to reduce peritumoral convective flow and thus likely decrease metastasis of
cancer cells [9], by also discussing the possibility of mechanically targeting tumor and healthy
cells on the basis of their different properties at the single-scale level [10].
Harboring stress in grown tissue can be observed by means of experimental methods [11, 12].
However, experiments to determine the global material response through ex vivo mechanical
tests on excised tissue samples are not able to reveal in what extent residual stress and adaptive
strain affect the intrinsic moduli and the local in situ properties. This work therefore focuses on
the explicit individuation of the way in which the harboring growth-induced stress and growth
deformation actually combine and determine the evolution of the nonlinear behavior of a hy-
perelastic growing tissue evaluated in terms of its tangent properties, by also including the birth
of possible stress-induced heterogeneities and anisotropies. More in detail, the instantaneous
elasticity tensor can be evaluated by exploiting a small-on-large approach [13] with the aim of
mimicking the incremental deformation superimposed on a finitely grown and stressed sample
subjected to a mechanical test, and a linear dependence of the tangent moduli upon the Cauchy
stress tensor is found, also in accord with some literature formulations [14]. Similar strategies
have been adopted, for example, to characterize the kinematic hardening of elasto-plastic ma-
terials at finite strains [15] and also in the biomechanical context [16], with reference to the
response of hyperelastic vascular structures [17], in which the level of stress can be diriment to
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evaluate the structural integrity of the vessel walls to support the in vivo pressure regimes [18].
The study of the modification of tangent properties caused by stress also suggests to investi-
gate how the modification of the local properties can affect the overall tissue properties and
the mechanical stability of the grown bodies. It is in fact known that growth, and the related
stress, can give origin to geometrical instabilities, that could explain malformations during the
development of masses in diseases from a purely mechanical standpoint [19]. With reference to
the case of tumor spheroids, strategies resorting to infinitesimal perturbation methods or eigen-
value analysis have been applied in the recent literature works [19, 20, 21], to evaluate specific
values of homogeneous growth or prestress [21, 19] that can produce overall instability so that
a configurational change occurs, leading for example to bi-lobed and multiple-lobed forms.
Also, experimental observations ascertain that tumor growth is characterized by macroscopic
stiffening [6, 22]. In the present work, the focus is on the determination of the explicit way in
which growth affects local tissue properties. In particular, with application to tumor spheroids,
we find that growth induces inhomogeneity and anisotropization and, unexpectedly, generates
local unstable phases. In this sense, prestressed tumors would represent a biological paradigm
of complex elastic composites that can exhibit a negative stiffness phase but overall stability, an
unusual behavior of a class of materials that have been argued, at least theoretically, by Drugan
and Lakes in some recent works [23, 24, 25]. By then starting from the obtained local behavior,
we will give some insights on how these results can influence the tumor overall behavior in
terms of global stability and overall stiffening.

2 INCLUDING GROWTH IN FINITE ELASTICITY

The growth of solid bodies can be addressed within the framework of finite elasticity [16, 2,
3]. More specifically, the kinematics of the growing mass is described using the well-established
approach of multiple configurations, that provides the multiplicative decomposition of the de-
formation gradient into the product of distinct tensors, each of them mapping the body material
points on a different configuration. To this aim, let B0 be a body in its reference configuration
with volume V0, as illustrated in Fig 1. The entire deformation of the elastic body is governed
by the motion x = x (X, t) that maps the material points X ∈ B0 onto spatial points x at any
time t, so that the overall deformation gradient F is additionally introduced by accomplishing
compatibility with the body particles displacement field u (X, t) ∈ C 2 (B0), thus giving:

F =
∂x (X, t)

∂X
= I+ u (X, t)⊗∇X (1)

where ⊗ is the dyadic product and ∇ is the nabla vector, the subscript indicating the co-
ordinates with respect to which the differentiation is performed. The deformation gradient is
assumed to be the multiplicative combination of a growth tensor and an elastic deformation due
to either adaptation or response to external loads [2, 26]:

F = Fl FeFg (2)

In order to analyze the sole effects of finite growth, no external loads are provided, i.e.
Fl = I, so that the classical elastic and growth part of deformation exclusively contribute to
mechanical stress. According to this structure, the body first undergoes traction-free growth that
maps the reference body material points X on an intermediate configuration, say Bg in which
they occupy the position xg (X, t) ∈ Bg. As known, non homogeneous growth can take place
in an incompatible manner [4] and elastic deformation is necessary to restore to compatibilize
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the independently grown elements by thus exerting suitable self-equilibrated stresses (see Fig
1). Then, the elastic strain Fe maps the points xg ∈ Bg onto the actual configuration x ∈ Bt
by here accounting the presence of residual stresses. By further assuming isotropic growth one
can write Fg = λg I with λg representing the growth stretch, also the elastic tensor Fe results
diagonal:

Fe = FF−1g Je = JJ−1g (3)

J = detF, Je = detFe and Jg = detFg being the Jacobians of the transformations.
In particular, Jg = dVg/dV0 = λ3g represents the volume change due to growth while, fol-
lowing literature suggestions [3], elastic incompressibility –i.e. Je = 1– has been hereinafter
assumed. Constitutive assumptions are introduced and, specifically, an incompressible neo-

Figure 1: Sketch of the kinematics of growth in finite strain obeying a multiplicative decomposition of the defor-
mation gradient F into a growth part Fg mapping material points onto an intermediate and generally incompatible
configuration and an elastic part Fe which drives the body to the current compatible (grown) configuration.

Hookean strain energy density for the tissue has been adopted:

ψe (Fe) = µ (Fe : Fe − 3) (4)

Standard thermodynamic considerations [18] lead to the following expression for the Piola-
Kirchhoff (nominal) and the Cauchy (actual) stress in presence of growth:

P = Jg
∂ ψe
∂Fe

F−Tg − Jg pF−T and σ =
∂ ψe
∂Fe

FT
e − pI (5)

with the two stress measure being related through the well-known Nanson’s transport for-
mula, i.e. P = JσF−T [27]. Accordingly, the quasi-static balance of linear momentum, by
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both supposing vanishing body forces and that the velocity of growth is much slower than the
elastic response of the body, is given by [27]:

∇X ·P = 0, ∀X ∈ B0 and ∇x · σ = 0, ∀x ∈ Bt (6)

to which opportune traction-type boundary conditions σ · n = qt for x ∈ ∂Bqt or kinematic
constraints u · n = u for x ∈ ∂But (or, equivalently, their pulled-back versions) are associated.

2.1 Application to a tumor spheroid

The analysis of the finite growth of solid tumor spheroids is a particularly suitable case of
interest both from a theoretical and a practical point of view. From a biological standpoint,
the growth of solid tumors results from the unpredictable and abnormal proliferation of cells
that evaded their natural program. The complex physiology characterizing tumor growth has
been far investigated within the field of biomechanics in order to furnish an engineering-based
interpretation of the most of biochemical and physical events underlying tumor formation and
development. In particular, attention has been focused on the prediction of solid tumor growth
and the characterization of growth-induced mechanical stresses, which seem to be actively in-
volved in some adverse mechanisms favoring tumor invasion and opposition to treatment [5].
It is in fact widely accepted that high solid stress and interstitial fluid pressure co-evolve within
tumor masses with gradients that cause nutrient outward flow diversion, this orienting tumor pe-
ripheral expansion and promoting central necrosis and resistance to drug penetration [9]. With
focus on the present application, the relations presented above in general coordinates can be
then particularized to study the growth of a tumor spheroid. A spherically symmetric geome-
try is introduced, so that X = {R,Θ, Φ} and the field variables depending exclusively on R.
A spherical body is modeled by considering a thick spherical shell with an external radius Re

delimiting the control volume and an inner radius Ri → 0. Furthermore, spherical symme-
try ensures that the deformation gradient F in equation (1) can be conveniently referred to its
principal coordinates. By indicating with x = {r, θ, φ} the current coordinates, one has:

F = Diag{λr λθ λφ} = Diag

{
∂r

∂R

r

R

r

R

}
(7)

with λφ = λθ. The elastic deformation, under growth isotropy, hires a diagonal structure and
reads:

Fe = Diag

{
λr
λg

λφ
λg

λφ
λg

}
(8)

In addition, the linear momentum balance (6) under spherical symmetry returns a sole non-
trivial equilibrium equation:

dPRR
dR

+
2

R
(PRR − PΦΦ) = 0,

dσrr
dr

+
2

r
(σrr − σφφ) = 0 (9)

2.2 The effect of heterogeneous growth on in situ stresses

To faithfully characterize the stress and stiffness evolution triggered by the growth, the kine-
matics and the total deformation of a tumor spheroid have been directly related to spherically
isotropic growth by exploiting the elastic incompressibility, in a way also to obtain fully analyt-
ical results of the nonlinear problem. In fact, by taking into account the gradient form (7), the
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constraint equation λr λ2φ = Jg gives the following expression for the deformed radius r(R):

r(R) =

[
3

∫
Jg(Γ )Γ

2 dΓ

] 1
3

(10)

in which the condition r(0) = 0 has been involved. The total stretches have then derived by
resorting to relations (7)1. Also, for the sake of simplicity, a radially varying growth profile
has been assigned. This assumption here neglects the evidences according to which mechanical
stress can inhibit in time growth potential [28, 29, 30]. However, here the focus is on the direct
effect that growth can have on stress and remodeling of tissue properties, depicted by means of
a steady state problem of a freely growing sphere.

2.3 Piecewise constant growth

The simplest case study that allows to analyze the effect of heterogeneous growth within a
tissue spheroid can be realized by assigning a piecewise growth profile. To this aim, let Rc be
the reference contact radius between an internal spheroid surrounded by an external crown with
outer radius Re. Also, let the volume changes due to isotropic growth be denoted by Jg1 = λ3g1
and Jg2 = λ3g2, respectively. In this situation, equation (10) reduces to r1 = λg1R in the
internal sphere, and a hydrostatic stress state σ = σ1I therein occurs, the value σ1 being given
by equation (5):

σ1 = λ−2g1 P1 = 2µ1 − p1 (11)

In the outer shell, by accounting the continuity of displacements at the interface, elastic incom-
pressibility leads to:

r2 =
3

√
r3c + Jg2 (R3 −R3

c) =
3

√
Jg2R3 + (Jg1 − Jg2)R3

c (12)

and, consequently, the application of (7) and (8) together with constitutive relations (5)1 let to
derive the following expressions for the nominal stress :

Pr2 = 2µ2

λ4g2R
2

(Jg2R3 + (Jg1 − Jg2)R3
c)

2
3

− p2(R)
(Jg2R

3 + (Jg1 − Jg2)R3
c)

2
3

R2
(13)

Pφ2 = 2µ2
λg2 (Jg2R

3 + (Jg1 − Jg2)R3
c)

1
3

R
− p2(R)

λ4g2R

(Jg2R3 + (Jg1 − Jg2)R3
c)

1
3

(14)

The linear momentum balance (9) with respect to the reference coordinates in the outer shell,
after some passages, leads to the first-order ODE:

dp2
dR

= − 4µ2R
6
c λg2 (Jg1 − Jg2)

2

3

√
(Jg2R3 + (Jg1 − Jg2)R3

c)
7

(15)

Direct integration of equation (15) reads:

p2(R) = C2 − µ2 λg2
R (3Jg2R

3 + 4 (Jg1 − Jg2)R3
c)

3

√
(Jg2R3 + (Jg1 − Jg2)R3

c)
4

(16)

1It is worth to note that the spherical reference configuration is here assumed residual stretch-free.
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The Cauchy stresses of the external phase in accord to relation (5)2 together with the substitution

R = 3

√
R3
c(1− Jg1/Jg2) + r3/Jg2. Then, the integration constant C2 is obtained by imposing

traction-free spheroid growth, i.e. σr2(re) = 0, where re = r2(Re) descends from equation
(12):

C2 =
µ2 λg2Re (4R

3
c (Jg1 − Jg2) + 5R3

eJg2)

3

√
(R3

c (Jg1 − Jg2) +R3
eJg2)

4
(17)

the knowledge of the stress in the shell thus allowing to also find the value of the internal
pressure p1.

3 Predicting growth-induced modification of tangent stiffness

The bulk growth of tumor spheroids and the residual stresses associated to the abnormal
hyper-proliferation of the mass within a confined region initiate a process of remodeling in
which tissue properties dramatically change with respect to the host surroundings. Solid tu-
mors might in fact become very complex materials in a mechanical sense since stress, fluid
pressure and mass accretion can combine together in a way to produce tissue heterogeneity
and potentially non-standard behavior which, to the best authors’ knowledge, has not been dis-
cussed. To this purpose, in the light of the very recent biomechanical Literature [19, 21, 20]
focusing on growth-induced instabilities, the authors here hypothesize and investigate the possi-
bility for tumor spheroids of exhibiting some unexpected stress-driven characteristics that make
them non-ordinary composite materials, showing that residual stress and stretch explicitly af-
fect tissue properties. More specifically, starting from the grown tumor spheroid described in
the previous section, the tangent stiffness matrix of the tumor has been evaluated by invoking a
small-on-large approach. This strategy, whose formulation has been encountered in many clas-
sical elasticity works (see for example [14, 13, 31]) and somehow generalizes the well known
evaluation of the elastic modulus of a cord under constant tension, provides that a further (small)
motion is superimposed to an already finitely deformed body by means of a deformation gradi-
ent, say Fs = I+Hs, with Hs = us ⊗ ∇x being the gradient of the additional displacement us
which maps the body points from the position x (X, t) to the new updated current configuration,
as illustrated in Fig 2. In particular, the following expression for the associated tangent stiffness

Figure 2: Conceptual scheme of the small-on-large procedure
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C = [∂σ/∂ sym(Hs)]Fs→I has been derived:

Cijkl =
1

2
(δikσjl + δjlσik + δilσjk + δjkσil) + J−1e

∑
m,n,p,q

(
F e
imF

e
jn + F e

inF
e
jm

) ∂2ψ

∂Ce
mn∂C

e
pq

(
F e
pkF

e
ql + F e

plF
e
qk

)
(18)

which provides the elastic moduli to linearly depend on the resident stress, while elastic defor-
mation affect the initial moduli in a nonlinear manner.

By accounting the neo-hookean constitutive law (4), the remodeled stiffness tensor of the
tumor spheroid exhibits a growth-induced transverse isotropy, the independent nonzero compo-
nents in this case reading:

Crrrr = 2µλ2er + 2σr,

Cφφφφ = 2µλ2eφ + 2σφ, (19)

Crφ rφ = 8µ
λ2er λ

2
eφ

(λer + λeφ)
2 + σr + σφ

4 GROWTH-INDUCED STRESS AND MODULI REMODELING

With reference to the problem described in section 2.3, we focus on the modeling of an
internal tumor inclusion undergoing homogeneous bulk growth Jg1 > 1, surrounded by a host
crown in a homeostatic state, therefore we conveniently set Jg2 = 1 in a way to analyze the
effects of mass growth both in terms of internal remodeling and in terms of the environmental
response. Furthermore, the two regions are assumed to share the same initial modulus µ. Under
these assumptions, and also accounting kinematic equation (12), tumor volume fraction results
a sigmoidal function of the growth stretch:

ϕ = ϕ0
Jg1

1 + ϕ0 (Jg1 − 1)
(20)

where ϕ0 is the initial tumor fraction, see Fig 3. Tumor invasion is accompanied by the
accumulation of intratumoral pressure. In particular, as shown in Fig 3, tumor compression
increases for lower fractions and growth rates due to the exchange of mechanical forces with a
wider environment. Also, the progression of tumor radius allows the mass to win the reaction
of the external environment and minimize the built-in stress, the growth de facto inducing a
pseudo-relaxation of the internal spheroid towards a homogeneous unstressed state as ϕ → 1
within the control volume. The stress state in the overall spheroid, reported in Fig 4A, develops
in a way that intratumoral compression is accompanied by the push of the environment in radial
direction with circumferential peritumoral tensions that let the host crown accommodate tumor
expansion, this trends qualitatively meeting the most of recent literature works [8, 32].

Growth-induced stretch, residual stress actually combine in order to determine the tangent
updated properties of the tumor-host spheroid according to expressions (19), whose behavior is
illustrated in 4B for fixed growth and starting fraction. Residual stress clearly drives growth-
induced transverse isotropy and material inhomogeneity within the host shell, while intratu-
moral hydrostatic state and homogeneous deformation actually preserve an isotropic remod-
eling. However, it clearly emerges that harboring stress can induce negative stiffness phases.
This feature can occur, for example, when a body that stored (or received) energy is deformed
[33], and, consequently, also in presence of stress generated by growth. As a result, residually
stressed tumor-host systems can be seen as a complex composite material that exhibits local
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Figure 3: Tumor volume fraction (top) and hydrostatic stress (bottom) as a function of the growth.

instability due to negative-definite tangent matrix of tangent moduli. The study of the behavior
of biphasic composites with a negative stiffness inclusion has been recently carried out by the
Drugan and Lakes [24, 33]. In their works, they theoretically postulated the presence of an
isotropic and homogeneous internal sphere with negative Young modulus and investigated the
conditions ensuring global mechanical stability in terms of homogenized bulk modulus.

Differently, for the case under exam, the alone-unstable phase has been obtained a posteri-
ori as the result of the tissue growth and material remodeling, and the inhomogeneous moduli
exhibit a transversely isotropic structure. The negative-bulk modulus tumor region is strictly
governed by the behavior of the hydrostatic stress due to growth and also depends on the ini-
tial tumor volume fraction, in the sense that a strongly confined tumor (in terms of occupied
domain) experiences higher pressures (Fig 3) and therefore negative stiffness cores are therein
more likely to occur, as also shown in Fig 5A. On the other hand, the tangent matrix of the
environmental shell is characterized by a positive circumferential modulus, that can exhibit
strong gradients dominated by the behavior of interface hoop stress (see e.g. Fig 4B), while
the longitudinal modulus presents a point of zero crossing, say r0, which denotes a transition
between a locally unstable and a stable region and migrates as a function of growth with an
approximatevily linear profile reported in Fig 5B.
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Figure 4: A. Radial and circumferential stress in the tumor spheroid model. B. Development of the tangent moduli,
for λg1 = 2.5 and Rc = Re/5.

5 CONCLUSIONS AND PERSPECTIVES

Solid stress and tissue stiffness affect tumor growth and invasiveness and can have important
implications in treatment [6], especially in the study of a mechanical strategy of tumor targeting
that exploit the different properties exhibited by cancer and healthy cells [10]. Although ex
vivo overall properties of biological samples can be measured using a wide range of techniques
and, in particular, increased tumor stiffness is a widely accepted biomechanical property [6],
the understanding of the way in which in vivo local properties associated with growth evolve
and the study of the mechanical causes that concur to produce macroscopic tissue stiffening is
still partially unclear. The present work presents a mechanical based hypothesis ascertaining
that growth and related stress can explicitly determine unusual material inhomogeneities and
anisotropization within the tumor tissue, in addition providing the formation of internal un-
stable phases with negative moduli. This phenomenon connotes residually stressed tumors as
a biological paradigm of a special class of (artificial) composites exhibiting such uncommon
properties [33]. The presence of an unstable core can be prodromal to global instability. How-
ever, the works by Lakes demonstrate that these types of material can be not only overall stable
but can also manifest a considerable enhancement of homogenized bulk modulus [33, 24]. In
line with these literature evidences and with the above discussed results, we hypothesize that
tumors, and in general tissues undergoing growth, can exhibit an analogous behavior and can
represent a particular class of biological materials with peculiar local properties that can ex-
plain some macroscopic observations still representing an open issue both from a theoretical
and an experimental standpoint. In this sense, we aim to orient our future analyses to evaluate
the homogenized response of tumor masses in order to: 1) establish an analytical strategy to
evaluate the global stability region of tumor growth, 2) investigate the possibility of obtaining
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Figure 5: A. Variation of the sign of the tumor bulk modulus and B. Progression of the unstable host region as a
function of the growth stretch and the initial volume fraction.

tumor overall stiffening as the effect of the homogenized response of globally stable spheroids
at different growth stages and 3) exploit the knowledge of tumor local properties to support the
development of mechanically-based strategies for attacking tumor masses.
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