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Abstract 

Background: Guidelines suggest plateau pressure (PPLAT)≤30 cmH2O for patients with acute 

respiratory distress syndrome but ventilation may still be injurious despite adhering to this 

guideline.  The shape of the airway pressure vs. time curve (STRESS INDEX) may identify 

injurious ventilation.  We assessed accuracy of PPLAT  and STRESS INDEX to identify 

morphological indexes of injurious ventilation. 

Methods: Indexes of lung aeration (computerized-tomography) associated with injurious 

ventilation were used as a “reference standard”. Threshold values of PPLAT and STRESS INDEX 

were determined assessing the receiver-operating characteristics (“training set” N=30). 

Accuracy of these values was assessed in a second group of patients (“validation set” N=20). 

PPLAT and STRESS INDEX were partitioned between respiratory system (PPLAT,RS and STRESS 

INDEX,RS) and lung (PPLAT,L and STRESS INDEX,L) (esophageal pressure; “physiological set” 

N=50). 

Results:  Sensitivity and specificity of PPLAT>30 cmH2O were 0.06 (95% CI: [0.002 to 0.30]) 

and 1.0 (95% CI: [0.87 to 1.00]).  PPLAT>25cmH2O and a STRESS INDEX>1.05 best identified 

morphological indexes associated with injurious ventilation. Sensitivity and specificity of 

these values were 0.75 (95% CI:[0.35 to 0.97]) and 0.75 (95% CI:[0.43 to 0.95]) for 

PPLAT>25cmH2O vs. 0.88 (95% CI:[0.47 to 1.00]) and 0.50 (95% CI:[0.21 to 0.79]) for STRESS 

INDEX>1.05.  PPLAT,RS did not correlate with PPLAT,L (R2=0.0099); STRESS INDEX,RS and STRESS 

INDEX,L were correlated (R2=0.762). 

Conclusions: The best threshold values for discriminating morphological indexes associated 

with injurious ventilation were PPLAT,RS>25 cmH2O and STRESS INDEX,RS>1.05. While a 

substantial discrepancy between PPLAT,RS and PPLAT,L occurs, STRESS INDEX,RS reflects STRESS 
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INDEX,L. 
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Introduction 

The acute respiratory distress syndrome (ARDS) is a type of pulmonary inflammatory 

response to various inciting events characterized by hypoxemia and bilateral radiographic 

opacities1 with non-aerated regions in the dependent lung and relatively normally aerated 

regions in the non-dependent lung2-4.  Inappropriate ventilatory settings may over-distend the 

normally aerated lung and/or continuously open and close the non-aerated regions causing 

ventilator-induced lung injury5. 

Current guidelines recommend keeping end-inspiratory plateau airway pressure (PPLAT) 

<30 cmH2O6,7, based on a randomized clinical trial demonstrated that limiting tidal volume 

(VT) to 6 ml/kg predicted body weight and PPLAT to 30 cmH2O decreased absolute mortality 

by 9%8.  However, these recommendations are challenged by results of recent studies 

showing that (a) ARDS patients may be exposed to forces which can induce injurious 

ventilation despite values of PPLAT ≤30 cmH2O9-11; (b) impairment of chest wall mechanics 

compromises the ability of PPLAT to reflect over-distension12-14.  Another approach to assess 

the propensity for injurious ventilation is to assess the STRESS INDEX based on the shape of the 

airway pressure vs. time curve during constant flow15-18. Although used in clinical studies19-22 

and implemented in a commercially available ventilator23, the accuracy of the STRESS INDEX to 

assess the propensity for injurious ventilation has not been tested in humans, and has been 

questioned in the context of impairment in chest wall mechanics24,25.   

In the current study we assessed the diagnostic accuracy of PPLAT and STRESS INDEX to 

identify ventilator settings likely to produce injurious ventilation. As standards we used 

indexes of lung aeration (computerized-tomography) associated with injurious ventilation9,10. 

In a separate patient cohort, we examined the impact of chest wall mechanics on the utility of 

PPLAT and STRESS INDEX to identify propensity for injurious ventilation. 
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Material and Methods 

The institutional review board (Comitato Etico Interaziendale AUO S. Giovanni Battista 

e CTO di Torino, Italy) approved the study.  As the patients were incompetent, patients were 

included into the study and consent was delayed.  The family was informed of the study 

(although not required).  Written permission for using collected data was hence obtained from 

the patient (if competent) or from the family (in case of death or if the patient remained 

incompetent)2. 

Patients admitted from January 2007 to February 2012 to the intensive care units of the 

Molinette (Turin) and Policlinico (Bari) hospitals were considered for enrollment when the 

following criteria were met: age ≥18 years; diagnosis of ARDS26.  Exclusion criteria were: >3 

days elapsed since ARDS criteria were met and mechanical ventilation was initiated; history 

of ventricular fibrillation or tachyarrhythmia, unstable angina or myocardial infarction within 

preceding month; chest tube with persistent air leak; pre-existing chronic obstructive 

pulmonary disease; pregnancy; known intracranial abnormality. Measurements were 

interrupted and patients withdrawn from the study if any of the following a priori defined 

conditions occurred: (a) presence of inspiratory efforts during measurement of respiratory 

mechanics despite infusion of sedatives and respiratory muscle paralytics; (b) drop in arterial 

oxygen saturation <80%; (c) decrease in mean arterial pressure >10% of baseline despite 500 

ml intravenous bolus.   

 

MEASUREMENTS 

All patients were ventilated (SERVOi, Maquet, Lund, Sweden) according to the 

"ARDSNet" protective ventilatory strategy8.  Measurements were performed during absence 

of spontaneous respiratory muscle effort obtained by increasing doses of midazolam (up to 
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10mg/h) and/or propofol (150mg/h increments every 10 min)27,28 or use of neuromuscular 

blockade (cis-atracurium besylate 2-8 gamma/kg/min).  Absence of spontaneous effort was 

confirmed by inspecting flow and airway pressure traces during an end-expiratory pause of 4-

5 seconds27,28.   

 

RESPIRATORY MECHANICS  

Flow (heated pneumotachograph Fleisch No. 2; Fleisch, Lausanne, Switzerland and 

differential pressure transducer; Diff-Cap, Special Instruments, Nordlingen, Germany), 

volume and airway opening pressure (Paw) (Special Instruments Digima-Clic ± 100 cmH2O; 

Nordlingen, Germany) were measured as previously described16,18,29. In a subset of 50 

patients, intra-thoracic pressure was evaluated by assessment of esophageal pressure (PES)30 

using a thin latex balloon-tipped catheter system (Microteck Medical B.V., Zutphen, 

Netherlands) connected by a polyethylene catheter to a pressure transducer (Special 

Instruments Digima-Clic ± 100 cmH2O; Nordlingen, Germany)31.   

All the described variables were displayed and collected for 5 minutes on a personal 

computer through a 12-bit analog-to-digital converter board (National Instrument DAQCard 

700; Austin, TX, USA) at a 200 Hz sample rate of (KleisTEK Engineering; Bari, Italy).  End-

expiratory and end-inspiratory occlusions were performed.  Signals were averaged and 

smoothed by a filter that averaged the signal over a 120 ms time window18. 

 

END-INSPIRATORY PLATEAU PRESSURE 

PPLAT of the respiratory system (PPLATRS) was the value of Paw after an end-inspiratory 

occlusion.  In the subset of patients in whom PES was measured, end-inspiratory chest wall 

plateau pressure (PPLATCW) was measured as the variation in PES between end-expiratory and 
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end-inspiratory occlusions; end-inspiratory plateau pressure of the lung (PPLATL) were 

estimated as PPLATRS-PPLATCW
12-14.  

 

STRESS INDEX 

The software identified the beginning and the end of each recorded breath by means of a 

threshold value (0.1 liter/second) on the flow signal17-19.  Trans-pulmonary pressure (PL) was 

calculated as PAW-PES 
12-14.  Individual flow, Paw and PL signals were averaged and smoothed 

by a filter that averaged the signal over a 120 ms time window.  On the resulting mean flow, 

the software first identified the steady flow level and then the largest portion of flow signal 

that was considered to be steady flow ±3%17-19.  The beginning and the end of this constant 

portion were marked by cursors. To eliminate on and off flow transient, the constant flow 

portion was further narrowed by adding a 50 ms offsets after the beginning (time 0) and 

before the end (time 1) of the constant flow portion.  The portion of the mean Paw-time and 

PL–time curves encompassed in the time interval time 0-time 1 was fitted to the equations:  

Paw = aaw . (time 0-time 1) 
baw+ caw  

PL = aL . (time 0-time 1) 
b

L+ cL  

using the Levenberg-Marquardt algorithm17-19.  Values of R2 were computed and displayed.  

The coefficients baw and bL (STRESS INDEX,RS and STRESS INDEX,L) are dimensionless number 

that describe the shape of the Paw-time and of the PL-time curves.  Values of coefficient b < 1 

indicate that elastance decreases with time, whereas elastance increases with time for values 

of coefficient b > 1.  Finally, b = 1 indicates a constant elastance during tidal inflation (Figure 

1)17-19.  

 



 11

COMPUTERIZIED TOMOGRAPHY ASSESSMENT OF “VENTILATOR INDUCED LUNG INJURY” 

As soon as targets of the ventilatory protocols were reached and respiratory and 

hemodynamic parameters (measured at 20-30-min intervals) were stable, patients were 

transferred to the computerized tomography (CT) scan facility.  During the transport and the 

exam, the ventilator and the ventilator settings were the one used for the clinical 

management; particular attention was paid to avoid ventilator disconnection9,10.  Lung 

scanning was performed from the apex to the base using a Light Speed Qx/i (General 

Electric Medical System, Milwaukee, WI, USA) at the end of end-expiratory and end-

inspiratory occlusions9,10. The ventilator settings were identical to those previously set.  The 

CT scanner was set as previously described9,10. Each section of the right and left lung was 

chosen by manually drawing the outer boundary along the inside of the ribs and the inner 

boundary along the mediastinal organs. Pleural effusions were excluded.  Non-aerated 

(density between +100 and –100 Hounsfield units), poorly aerated (density between –101 

and –500 Hounsfield units), normally aerated (density between –501 and –900 Hounsfield 

units), and hyperinflated (density between –901 and –1000 Hounsfield units) lung 

compartments were identified as previously described3,4,32. 

Volume of the entire lungs (i.e. the sum of gas plus tissue volume) and of each 

compartment at end-expiration and end-inspiration was measured for each slice as: [(size of 

the pixel)2 multiplied by the number of pixels in each compartment] multiplied by the 

thickness of the CT lung slice3,4,32. “Tidal hyperinflation” was defined as the volume of the 

hyperinflated compartment at end-inspiration minus the volume of the hyperinflated 

compartment at end-expiration9,10.  “Tidal recruitment” was defined as the volume of the 

non-aerated and of the poorly aerated compartments at end-expiration minus the volume at 

end-inspiration9,10. “Protected tidal inflation” was the volume of the normally aerated 

compartment at end-inspiration minus the volume of the normally aerated compartment at 
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end-expiration9,10. All were expressed as % of total tidal inflation-related changes in CT lung 

volume. 

PULMONARY INFLAMMATORY RESPONSE 

Five-ten min after CT and respiratory mechanics measurements, a broncho-alveolar 

lavage was performed and stored at -80 oC. as previously described9,10,33. Assay for tumor 

necrosis factor-α soluble receptors, interleukin 6, interleukin 8 and interleukin 1β and 

interleukin-1 receptor antagonist were carried out using a solid-phase enzyme-linked 

immunoabsorbent assay (ELISA) method (Diaclone, Milan, Bender Med Systems, Milan, 

ITALY and BioSource International Inc., Camarillo, USA)9,10,33. 

 

STUDY DESIGN 

In Phase 1, we evaluated the diagnostic accuracy of PPLAT,RS and STRESS INDEX,RS to 

identify the propensity for injurious ventilation using CT criteria to assess the degree of 

overdistension9,10.  Accuracy of PPLAT,RS and STRESS INDEX,RS was determined in a first group 

of patients (“training set”) to select the threshold values that discriminated best between 

patients with and without the condition of interest; the accuracy of these values was 

prospectively assessed in a second group of patients (“validation set”)34.  In Phase 2, we 

addressed the question of how chest wall mechanics affects interpretation of PPLAT,RS and of 

the STRESS INDEX,RS (“physiological set”)12-14.  In this phase, we did not use CT scan or 

pulmonary concentration of inflammatory cytokines.  Patients were assigned to the different 

data sets depending on the chronological order in which they entered the study. 

The maximal degrees of association between CT scan evidence of “protected tidal 

inflation”, “tidal hyperinflation or “tidal recruitment” was identified using cluster analysis 

with cubic clustering criteria9. Cluster analysis entails grouping similar objects into distinct, 
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mutually exclusive subsets referred to as clusters; elements within a cluster share a high 

degree of “natural association,” whereas the clusters are relatively distinct from one another35.   

Values of PPLAT,RS and STRESS INDEX,RS that best differentiated the patients who were 

ventilated with CT scan evidence of “protected tidal inflation” from those in whom tidal 

volume and pressure limitation caused CT scan evidence of “tidal hyperinflation” or “tidal 

recruitment“ were determined assessing the receiver-operating-characteristics curve36.   

The area under the receiver-operating characteristics curve for PPLAT,RS and STRESS 

INDEX,RS was calculated and confidence intervals (CI) reported.  The selected threshold values 

were those that minimized false negative classifications (i.e. patients who were thought to be 

protected when in fact they were not) with a specificity value not lower than 0.5.  This 

decision was based on the assumption that from a clinical perspective, a false negative result 

is worse than a false positive.   

The predictive power of the previously selected values of PPLAT,RS and STRESS INDEX,RS 

was estimated using the previously selected cut-off values that best discriminated patients 

with CT scan evidence of “protected tidal inflation” from “tidal hyperinflation” or “tidal 

recruitment“.   

Values of STRESS INDEX,RS and PPLAT,RS, and values of STRESS INDEX,L and PPLAT,L were 

compared in a third set of patients ventilated according to the "ARDSNet" protective ventilator 

strategy8. 

 

STATISTICAL ANALYSIS 

Results are expressed as mean±SD; P<0.05 was considered significant.  Comparisons of 

continuous and categorical data between groups were performed using unpaired t-tests and 

chi-squared tests.  Regression was performed using least-squares.  Since values of cytokine 
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concentrations were not normally distributed, log10 transformation was performed prior to 

applying parametric statistics.   

A true-positive was defined when PPLAT  and STRESS INDEX predicted “tidal 

hyperinflation” or “tidal recruitment” and CT scan analysis was confirmatory.  A true-

negative was defined when PPLAT and STRESS INDEX predicted absence of “tidal 

hyperinflation” or “tidal recruitment” and CT scan analysis was confirmatory. A false-

positive was defined when PPLAT  and STRESS INDEX value predicted presence of “tidal 

hyperinflation” or “tidal recruitment” and CT scan was not confirmatory. A false-negative 

was defined when PPLAT  and STRESS INDEX value predicted absence of “tidal hyperinflation” 

or “tidal recruitment” and CT scan analysis was not confirmatory.  

Standard formulae were used to calculate sensitivity, specificity, and positive and 

negative predictive values. Positive and negative likelihood ratios were calculated (SAS 

software, version 9.1.3; SAS Institute, Cary, North Carolina, USA; MedCalc version 11.1.1, 

MedCalc software BVBA, Ostend, Belgium). 
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Results 

Some of the results reported in the present investigation include data obtained from 

patients enrolled in previously published studies 1,9,10,20. 

Of the 110 patients enrolled, 10 were excluded for the following reasons: >3 days since 

mechanical ventilation initiation (N=5); chest tube with persistent air leak (N=2); unilateral 

lung disease (N=2); spontaneous respiratory effort during physiological measurements (N=1).  

Of the remaining patients 100 patients, 50 patients were included in PHASE 1 (30 in the 

“training set” and 20 in the “validation set”), and 50 patients were included in PHASE 2 (Table 

1).   

The volume of “protected ventilation” and of “tidal hyperinflation” identified 2 

clusters of patients.  In a cluster of 28 patients (16 in the “training set” and 12 in the 

“validation set”), “tidal hyperinflation” was 8.36±5.51 (“training set”) and 9.91±4.31% 

(“validation set”), while “protected ventilation” was 71.20±8.05 (“training set”) and 

75.68±8.01% (“validation set”) of the total tidal-inflation associated change in CT lung 

compartments.  These patients were considered relatively protected from injurious ventilation 

(“PROTECTED”).  In a cluster of 22 patients (14 in the “training set” and 8 in the “validation 

set”), “tidal hyperinflation was 53.76±7.92 (“training set”) and 50.91±21.78% (“validation 

set”), and “protected ventilation” was 28.55±16.33 (“training set”) and 25.91±14.71% 

(“validation set”) of the total tidal-inflation associated change in CT lung compartments.  

These patients were considered relatively not protected from injurious ventilation (“NON 

PROTECTED”).  “Tidal recruitment” was 20.44±7.03 (“training set”) and 14.81±7.73% 

(“validation set”) in “PROTECTED” and 17.69±8.15 (“training set”) and 23.18±9.32% 

(“validation set”) in the “NON-PROTECTED”.  As such, “tidal recruitment” could not be 

identified in the cluster analysis as a distinct entity that could define a “protected” vs. a “non-
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protected” ventilator setting and therefore could not be used as additional criterion to define a 

non-protected tidal inflation. 

Ventilator settings, and biological variables in the “PROTECTED” and “NON PROTECTED” 

clusters are shown in Table 2.  Pulmonary concentrations of the inflammatory cytokines were 

lower in PROTECTED than in NON-PROTECTED (P < 0.05). 

The areas under the receiver-operating characteristics curves for PPLAT,RS and STRESS 

INDEX,RS (0.833; 95% CI:[0.621 to 0.954] and 0.917; 95%CI:[0.724 to 0.990], respectively) 

(Figure 2) were both significantly (P=0.001) larger than that of an arbitrary test that would be 

expected a priori to have no discriminatory value.  Sensitivity and specificity of the value of 

PPLAT,RS currently suggested by guidelines (>30 cmH2O) were 0.06 (95% CI: [0.002 to 0.30]) 

and 1.0 (95% CI: [0.87 to 1.00]), respectively.  The threshold value of PPLAT,RS that best 

identified NON-PROTECTED patients was 25 cmH2O; sensitivity and specificity were 0.82 (95% 

CI: [0.48 to 0.98]) and 0.67 (95% CI: [0.35 to 0.90]), respectively. A threshold value of 

STRESS INDEX,RS >1.05 best identified NON-PROTECTED patients; sensitivity and specificity were 

0.82 (95% CI: [0.48 to 0.98]) and 0.83 (95% CI: [0.52 to 0.98]), respectively.   

Sensitivity and specificity of PPLAT,RS >25 cmH2O to identify “NON-PROTECTED” patients 

were 0.75 (95% CI: [0.35 to 0.97]) and 0.75 (95% CI: [0.43 to 0.95]), respectively.  

Sensitivity and specificity of a STRESS INDEX,RS >1.05 to identify “NON-PROTECTED” patients 

were 0.88 (95% CI: [0.47 to 1.00]) and 0.50 (95% CI: [0.21 to 0.79]) (Table 3). 

The correlation coefficients relating STRESS INDEX,RS vs. STRESS INDEX,L and of PPLAT,RS vs. 

PPLAT,L were 0.762 and 0.0099, respectively (Figure 3).  
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Discussion 

The main findings of the present investigation are: (a) the value of PPLAT,RS recommend 

by current guidelines (≤ 30 cmH2O) does not accurately discriminate patients with CT-scan 

indexes of tidal hyperinflation; (b) the discriminating threshold values that identify associate 

PPLAT,RS and STRESS INDEX,RS to CT pattern of lung aeration related to tidal hyperinflation are 

<25 cmH2O and not greater than 1.05, respectively; (c) while STRESS INDEX,RS represents a 

reasonable reflection of STRESS INDEX,L, there is substantial discrepancy when using PPLAT,RS 

vs. PPLAT,L. 

Rigorous statistical methods have been developed to evaluate the degree of agreement 

between a test and the best available method for establishing the presence/absence of the 

condition of interest37.  Accordingly to these methods, (a) we included a study population 

representative of ARDS patients26 excluding only those patients that were mechanically 

ventilated for >72 hours or in whom measurements of respiratory mechanics could not be 

performed; (b) we used previously established methods to measure physiological variables31; 

(c) we developed threshold values of PPLAT,RS and STRESS INDEX,RS through the analysis of the 

receiver-operating characteristics curves obtained in a training set (30 patients) and then 

evaluated their accuracy in a validation set (20 patients);  (c) we selected threshold values 

giving priority to those that optimized sensitivity minimizing false negative classifications 

(i.e. patients who were thought to be protected when in fact they were not).  This decision was 

based on the assumption that from a clinical perspective, a false negative result is less 

acceptable than a false positive.  However our use of CT scan indexes of lung aeration as a 

“reference standard” for injurious ventilation has some weaknesses.  We used CT scan 

evidence of “protected tidal inflation” and “tidal hyperinflation to select a cluster 

characterized by a predominant “protected tidal inflation” and a cluster characterized by 
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predominant “tidal hyperinflation”.  These two clusters may represent different ranges of a 

continuum 4,38) and, since tidal recruitment could not be addressed by cluster analysis, the 

terms “PROTECTED“ and “NON PROTECTED“ should be referred only to tidal hyperinflation.  

Moreover, although we found a concentration of inflammatory mediators higher in patients 

included in the NON-PROTECTED cluster than in patients included in the PROTECTED cluster9,10, 

this may be a marker of severity of ARDS and not solely reflect the degree of hyperinflation.   

A clinical trial8 and observational studies39,40 have demonstrated that limiting VT to 6 ml/kg predicted 

body weight and PPLAT,RS to 30 cmH2O improves survival. Our data show that the threshold value that best 

identified NON-PROTECTED patients was not PPLAT,RS >30 cmH2O but PPLAT,RS >25 cmH2O.  These data are in 

accord with previous studies demonstrating that tidal hyperinflation may occur despite limiting VT to 6 ml/kg 

predicted body weight and PPLAT,RS to 30 cmH2O9-11. 

Previous studies proposed analyzing the PAW-t curve during constant flow to assess the 

mechanical properties of the respiratory system of ARDS patients15,16.  This approach is based 

on the concept that at constant flow, the rate of change of PAW with time corresponds to the 

rate of change of elastance of the respiratory system during tidal inflation15, and can be 

described by a power equation (pressure = a . timeb+c)16. A coefficient b=1.0 indicates a 

linear Paw-t curve and an unchanging elastance during inflation; coefficient b<1.0 indicates 

decreasing elastance during inflation; coefficient b>1.0 indicates a increasing elastance.  

Experimental studies demonstrated that markers of injurious ventilation were minimized 

using ventilator settings associated with 0.9<b<1.1 and therefore concluded that the 

coefficient b (called STRESS INDEX) could be used to detect tidal hyperinflation or tidal 

recruitment during mechanical ventilation17,18,41-43.  Although subsequent experimental studies 

challenged these findings24,44, the use of STRESS INDEX to detect injurious ventilation has been 

tested in clinical studies19-22 and implemented in a commercially available ventilator23.  We 

found that a STRESS INDEX,RS >1.05 best identified patients NON PROTECTED from injurious 
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ventilation.  The area under the receiver-operating characteristics curve for STRESS INDEX,RS 

and PPLAT,RS were not statistically different.  However, in the validation set, sensitivity of 

PPLAT,RS >25 cmH2O was slightly lower than sensitivity of STRESS INDEX,RS>1.05 (0.75 (95% 

CI:[0.35-0.97] vs. 0.88 (95% CI: [0.47-1.00]) (Table 3). 

Our data demonstrate that while alterations of chest wall mechanics may substantially 

impair the ability of PPLAT,RS to estimate PPLAT,L, STRESS INDEX,RS closely reflects STRESS 

INDEX,L.  These results may be explained by partitioning the volume-pressure relationship of 

the respiratory system between the lung and the chest wall45-47.  PPLAT,RS as a measure of 

PPLAT,L is directly related to the stiffness of the chest wall at the end of an inspiration, which 

may be substantial in patients with ARDS12-14.  The STRESS INDEX reflects the changes with 

volume of the elastance of the respiratory system (PAW vs. time) or of the lung (PL vs. time).  

In the range of changes of lung volume associated with a low tidal volume strategy8, the 

volume-pressure relationship of the chest wall is linear12,45,48, and hence the STRESS INDEX 

should largely reflect the mechanical properties of the lung.  

In conclusion, the present study demonstrates that the value of PPLAT,RS currently 

recommend by guidelines (≤ 30 cmH2O) does not accurately discriminate patients with CT-

scan indexes of tidal hyperinflation.  The threshold values of PPLAT,RS and of STRESS INDEX,RS 

that correspond to CT-scan indexes of tidal hyperinflation are < 25 cmH2O and < 1.05.  While 

a substantial discrepancy between PPLAT,RS and PPLAT,L occurs, STRESS INDEX,RS reflects STRESS 

INDEX,L with reasonable accuracy. Clinical trials are required to test whether ventilator 

settings targeting PPLAT,RS ≤25 cmH2O and/or a STRESS INDEX,RS ≤1.05 will improve clinical 

outcomes.   
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