1,442 research outputs found

    Dark energy, cosmological constant and neutrino mixing

    Full text link
    The today estimated value of dark energy can be achieved by the vacuum condensate induced by neutrino mixing phenomenon. Such a tiny value is recovered for a cut-off of the order of Planck scale and it is linked to the sub eV neutrino mass scale. Contributions to dark energy from auxiliary fields or mechanisms are not necessary in this approach.Comment: 10 pages, 2 figure

    A new perspective in the dark energy puzzle from particle mixing phenomenon

    Full text link
    We report on recent results on particle mixing and oscillations in quantum field theory. We discuss the role played in cosmology by the vacuum condensate induced by the neutrino mixing phenomenon. We show that it can contribute to the dark energy of the universe.Comment: 11 pages, to be published on the review book "Dark Energy-Current Advances and Ideas

    Contact interaction in an unitary ultracold Fermi gas

    Get PDF
    An ultracold Fermi atomic gas at unitarity presents universal properties that in the diluted limit can be well described by a contact interaction. By employing a guide function with correct boundary conditions and making simple modifications to the sampling procedure we are able to handle for the first time a true contact interaction in a quantum Monte Carlo calculation. The results are obtained with small variances. Our calculations for the Bertsch and contact parameters are in excellent agreement with published experiments. The possibility of using a more faithfully description of ultracold atomic gases can help uncover features yet unknown of the ultracold atomic gases. In addition, this work paves the way to perform quantum Monte Carlo calculations for systems interacting with contact interactions, where in many cases the description using potentials with finite effective range might not be accurate

    Efficient Implementation Of The Hellmann-feynman Theorem In A Diffusion Monte Carlo Calculation.

    Get PDF
    Kinetic and potential energies of systems of (4)He atoms in the solid phase are computed at T = 0. Results at two densities of the liquid phase are presented as well. Calculations are performed by the multiweight extension to the diffusion Monte Carlo method that allows the application of the Hellmann-Feynman theorem in a robust and efficient way. This is a general method that can be applied in other situations of interest as well.13405410
    • …
    corecore