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Contact interaction in a unitary ultracold Fermi gas
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An ultracold Fermi atomic gas at unitarity presents universal properties that in the dilute limit can be well
described by a contact interaction. By employing a guiding function with correct boundary conditions and making
simple modifications to the sampling procedure we are able to calculate the properties of a true contact interaction
with the diffusion Monte Carlo method. The results are obtained with small variances. Our calculations for the
Bertsch and contact parameters are in reasonable agreement with published experiments. The possibility of using a
more faithful description of ultracold atomic gases can help uncover additional features of ultracold atomic gases.
In addition, this work paves the way to perform quantum Monte Carlo calculations for other systems interacting
with contact interactions, where the description using potentials with finite effective range might not be accurate.
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I. INTRODUCTION

Systems formed by fermions have many-body properties
that are of central importance for understanding observed
phenomena in many fields of physics. These fields include
ultracold gases, condensed matter, and nuclear physics. The
possibility of handling ultracold atomic Fermi gases, in a very
precise way, has allowed testing quantum many-body theories
in an unprecedented set of experimental conditions.

Ultracold Fermi gases can be tuned from weakly interacting
to strongly correlated regime by application of magnetic
fields near a Feshbach resonance [1]. When the interaction
has diverging scattering length, the unitary limit, the system
presents universal properties, i.e., it does not depend on the
nature of the interactions. The system universality allows one
to study the crossover from the Bardeen-Cooper-Schrieffer
(BCS) superfluid state to the Bose-Einstein condensed (BEC)
state, in general [2].

Countless efforts were made and continue to be made [3] to
uncover the many aspects involved in the observed phenomena
presented by the ultracold Fermi gases. In the present work we
investigate the unitary limit of this system at the crossover from
BCS to the BEC regime with an s-wave contact interaction.

Interactions of two neutral atoms are not always easy to
describe accurately. However, in the dilute regime, interactions
can be well represented by two-body collisions using a contact
potential. Nevertheless, a straightforward consideration of this
type of potential makes theoretical investigations problematic
because when two particles approach one another the wave
function diverges. This difficulty is usually avoided by adopt-
ing pseudopotentials of the Pöschl-Teller, hard sphere, square
well, or other forms [4]. In this fashion, valuable insights
have come from quantum Monte Carlo methods [5–8], despite
the fact that finite-range potentials lead to incorrect scattering
properties, which are fundamental quantities of these systems.
The resulting calculations must therefore include an additional
extrapolation to zero range. Since the trial wave functions
diverge in this limit, the extrapolations are not well behaved in
this limit.

It is not just a matter of principle or of interest in itself
to avoid using finite-range pseudopotentials to describe the
two-body interaction of ultracold Fermi gases. For instance, it
is important to avoid the possible influence of the true ground
state of the Pöschl-Teller model system, since it may have
tightly bound states highly dependent on the chosen range.
For repulsive interactions, there are still open questions about
the ferromagnetic character of the ground state and what
kind of ferromagnetic transition the system undergoes in this
case [9–11]. The possibility of simulating Fermi atomic gases
considering a contact interaction will help solve questions
like those previously mentioned. On the other hand, studies
of Bose systems, including Bose-Fermi mixtures, have been
done only using finite-range interactions in quantum Monte
Carlo calculations, see for example Refs. [12,13], introducing
possible bias in the calculation.

The contact interaction as we have considered allows the
quantities of interest to be obtained without the additional
burden of performing extrapolations to zero-range interac-
tions. This is useful in a twofold way. It can help understand
how previous results might have been affected by the use
of finite-range potentials, and also because the calculations
become simpler. Moreover, the results we present depend on
relatively small changes of the standard diffusion Monte Carlo
(DMC) algorithm. Additionally, we show how to compute the
two-body propagator for particles interacting through a contact
potential, which is an interesting result in itself.

II. METHODOLOGY

The system we study consists of N fermionic particles
described through the Hamiltonian

H = − �
2

2m

⎡
⎣N/2∑

i

∇2
i +

N ′/2∑
i ′

∇2
i ′

⎤
⎦ +

∑
i,i ′

v(ri,i ′), (1)

where the first terms are the kinetic energies of the up-spin
(unprimed index) and down-spin (primed index) particles and
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the last term is the zero-range interatomic potential. Here we
focus on the unpolarized system, and N/2 particles are spin-up,
and N/2 are spin-down. The simplest way the solve Eq. (1)
is to introduce a trial variational wave function �T (R), where
R ≡ {r1,r1′ , . . . ,rN/2,rN ′/2}, and minimizing the expectation
value of H [14]. Typically, one samples M configurations from
the probability density proportional to |�T |2 and average the
local energy. The value of the variational Monte Carlo energy
EV MC is a ground state upper bound and it normally depends
on the quality of the trial wave function. Beyond the VMC
calculation using the diffusion Monte Carlo (DMC) one can
project out the lowest state of the system from �T .

The Schrödinger equation can be written as a diffusion
equation in imaginary time τ = it/�,

−∂ψ(R; τ )

∂τ
= (H − ET )ψ(R; τ ), (2)

where ET is introduced to stabilize the norm of ψ(R; τ ) in
the limit of τ → ∞. It is convenient to expand the trial wave
function in the eigenstates {ψi} of H and make ET ≈ E0. In
that case, it is straightforward to show [15,16] that we project
out the ψ0 evolving �T in the imaginary time. In practice, the
total imaginary time is divided into n small time steps such that
τ = �τ · n and, the exact wave function is propagated like

ψ(R; τ ) = lim
n→∞[e−(H−E0)�τ ]n�T (R). (3)

In the DMC method the projected state at large imaginary time
is the lowest-energy state not orthogonal to the trial function.

The zero-range interaction in s-wave is enforced by using an
importance function that satisfies the Bethe-Peierls condition
(1/ri,j ′ − 1/a) when ri,j ′ → 0, where a is the two-body
scattering length. At unitarity, (a → ∞) the Bethe-Peierls con-
dition reduces simply to the wave function being proportional
to the inverse modulus of the pair relative distance at small
separations. This approach allows us to treat the system with
the zero-range pseudopotential as formed from pairs of free
particles subject to the correct boundary conditions when a
pair separation distance goes to zero.

The importance function we use is written as:

�T =
∏
ij ′

f (rij ′)�BCS ; (4)

�BCS = A[φ(r11′)φ(r22′ ) · · · φ(rN/2 N ′/2)], (5)

where the Jastrow pair function f (r) correlates the unlike spin
pairs of the system. The pair function is chosen to satisfy the
Bethe-Peierls condition, and the antisymmetric BCS function
�BCS is well behaved at small pair separations and defines the
nodal surface structure [5]. The operator A antisymmetrizes
like spin pairs. Here we use the general form for the BCS part
where the pairing functions are written like a set of plane waves

φ(r) =
NS∑
j=1

cj e
ikj ·r, (6)

and cj are variational parameters. The cj coefficients with the
same magnitude kj are equal.

These orbitals have the same form of previous works [16].
The short-range pairing function of Refs. [5,8] is not included
since the boundary condition from the potential is enforced

by the Jastrow factor. We have considered NS = 20 shells in
the guiding function and have obtained converged energies
for both variational and DMC calculations. The coefficients
entering in the pairing orbitals have been optimized as
described in Ref. [8] using the stochastic reconfiguration
method [17]. The function �BCS is projected on the subspace
with fixed number of particles N

|BCS〉 =
∏

i

(ui + via
†
kiα

a
†
−kiβ

)|0〉. (7)

If for ki > kF all the vi are equal to zero this function reduces
to a product of two Slater determinants of plane waves [16].
We call this the Jastrow-Slater wave function; it was used in
our previous work [16].

The Jastrow pair function f (r) in Eq. (4) correlates the
unlike spin pairs, and we take

f (r) = d cosh(λr)

r cosh(λd)
(8)

with f (r � d) = 1, the parameter λ is chosen to make f and
its first derivative continuous at the healing distance r = d. Its
value is of the order of the inverse interparticle distance and is
determined with a variational calculation. It is important that
the Jastrow pair function has the correct boundary condition
at short distances.

Our variational calculations are performed as in Ref. [16].
The variance of the energy of this trial function with the usual
VMC method is not well behaved. This can be seen by looking
at the form of the trial function when a pair separation is small.
For example, if up-spin particle 1 and down-spin particle 1′
are close together, the Jastrow factor f (r11′) goes like r−1

11′ . The
term in the Hamiltonian where − �

2

2m
(∇2

1 + ∇2
1′ ) operates on

this gives zero except at the origin where it cancels the contact
interaction, so that part of the local energy is well behaved.
The problem terms are those like ∇1f (r11′ ) · ∇1

�T (R)
f (r11′ ) . This

term goes like r11′
r3

11′
· ∇1

�T (R)
f (r11′ ) at small distances. The r2

11′ term

in the volume element as well as the angular integration makes
this term give a well-behaved contribution to the energy as the
pair separation goes to zero, however, this term is squared in
the energy variance, and the variance diverges.

The exact ground-state wave function must, of course, have
zero variance with H�0(R)

�0(R) = E0 independent of R. This means
that the exact wave function must have additional terms, which
cancel these divergences. These would have the form of three-
body correlations, which would cancel the divergences from
terms such as ∇1f (r11′) · ∇1f (r1j ′), and back flow terms to
cancel divergences from terms such as ∇1f (r11′) · ∇1φ(r1j ′).
Such terms would have to be constructed in such a way as to
not spoil the necessary boundary conditions. A hierarchy of
such terms may be required to obtain a well-behaved variance
of the local energy.

Since the integrated energy is well behaved, we have chosen
to attack the problem by modifying the sampling to control the
variance. The key insight is that for r11′ → 0, interchanging
the positions of particles 1 and 1′ reverses the sign of the
gradient ∇1f (r11′), but does not change the rest of the trial
wave function. We therefore modify the standard Metropolis
algorithm to include moves, which interchange the positions
of the closest pair of unlike spin particles. If the pair remains
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the closest pair after interchange, we accept this move with the
heat bath probability for interchange

Pint = �2
T (Rint)

�2
T (R) + �2

T (Rint)
, (9)

where Rint are the coordinates with the closest pair inter-
changed. We use the method of expected values to evaluate the
energy, after such a trial move, so that the energy contribution
is EL(Rint)Pint + EL(R)(1 − Pint). In the limit of small pair
separations, Pint → 1

2 , and the diverging contributions cancel.
The diffusion Monte Carlo calculations have the same

diverging terms in the local energy, and we employ a similar
technique to control the variance.

The propagation equation in imaginary time including �T

as an importance function

�T (R)ψ(R; τ + �τ )

=
∫

d3R′ �T (R)

�T (R′)
G(R,R′; �τ )�T (R′)ψ(R′,τ ). (10)

Since the zero-range interatomic potential is a δ function,
the usual Trotter-Suzuki decomposition of the propagator
e−H�τ is not adequate. The walkers are instead sampled from
�T (R)
�T (R′)G(R,R′; �τ ) [16] and we essentially have only to deal
with the kinetic energy term of the Hamiltonian. The short
time propagator we use is evaluated using the pair product
form from the two-body propagators g

G(R′,R) = G0(R′,R)
∏
i<j

g(r′
i ,r

′
j ; ri ,rj )

g0(r′
i ,r

′
j ; ri ,rj )

, (11)

where G0 and g0 are the free particle and the free pair
propagators, respectively. Note that for pairs with the same
spin g = g0. For pairs with opposite spin g can further be
written as grel × gcm, the product of the relative times the
center of mass propagators of the pair

g(r′
i ,r

′
j ′ ; ri ,rj ′ ) = grel(r′

ij ′ ; rij ′ )gcm(R′
ij ′ ; Rij ′), (12)

where Rij ′ = (ri + rj ′ )/2 is the center of mass of the pair. In
our approach it is necessary to write the full propagator as
above.

The centers of mass propagate like free particles [16].
On the other hand, the two-body propagator is a Green’s
function that can be constructed from the normalized solution
of the of the scattered s-wave function as employed in other
papers [16,18]

grel(r,r′; �τ ) =
∑

n

ϕn(r)e− �
2k2

n
m

�τϕ∗
n(r ′), (13)

where {ϕ} is the complete set of eigenstates of the two-body
Hamiltonian. Since the interaction is only in the s-wave, we
can separate into partial waves, and the s-wave contribution
for scattering length a becomes

gs(r,r
′,a)

= 1

4π2rr ′ Re
∫ ∞

0
dk

[
− (1 − ika)2

1 + k2a2
eik(r+r ′) + eik(r−r ′)

]

× e− �
2k2�t
m + bound state, (14)

where for positive a, the bound-state contribution should be
included. The integrals can be done straightforwardly in terms
of Gaussians and error functions,

gs(r,r
′,0) = 1

8π2rr ′

√
mπ

�2�t

× [−e
− m

4�2�t
(r+r ′)2 +e

− m

4�2�t
(r−r ′)2

]

gs(r,r
′,−∞) = 1

8π2rr ′

√
mπ

�2�t
[e− m

4�2�t
(r+r ′)2 +e

− m

4�2�t
(r−r ′)2

]

gs(r,r
′,a) = gs(r,r

′,−∞) − 1

4πrr ′|a|e
�

2�t

ma2 − r+r′
a

× erfc

(√
�2�t

ma2
− r + r ′

2a

√
ma2

�2�t

)
, (15)

where any bound-state contribution needs to be added. Here
we are primarily interested in the unitary case a = −∞ where
the relative coordinates propagator is particularly simple [19]

grel(r,r′; �τ ) = g0
rel(r,r

′; �τ )

+ 1

4π2rr ′

√
mπ

�2�τ
e
− m

4�2�τ
(r+r ′)2

, (16)

where the first term is a free-particle propagator for the relative
distances and the last one is the contribution of the s-wave
scattering.

The sampling of the importance-sampled propagator
�T (R′)G(R′,R)

�T (R) is accomplished by approximating it, sampling

the approximation, and using the ratio of �T (R′)G(R′,R)
�T (R) to the

approximation as a weight.
We first construct what we call the independent pair

propagator Gip(R′,R). We sort the unlike spin pair distances,
and first select the closest pair. We then eliminate all pairs
that contain the closest pair’s particles. We repeat this process
on the remaining pairs. The result is a list of independent
pairs. The independent pair propagator is the product of
the pair propagators Eq. (12) for these independent pairs.
From the form of the relative pair propagator, we see that

if the initial separation is much larger than
√

4�2�τ
m

, the
propagator becomes the free particle propagator. Furthermore
for large separations, the divergences in the trial function can
be neglected. Therefore we introduce a cutoff parameter, so
that if the separation is larger than this parameter, we sample
the pair from the free particle propagator. If it is less than
this cutoff, we approximate the trial function by the Jastrow
factor for that pair, and for these separations, we take its
asymptotic value, given by the Bethe-Peierls condition. We
sample the center-of-mass part of the pair propagator from
the noninteracting center of mass Gaussian, and the relative
separation from

rij ′
r ′
ij ′

grel(r ′
ij ′ ,r ij ′). The details of this sampling

are given in the Appendix. This general method can be readily
extended to scattering lengths away from unitarity.

The value of the cutoff parameter does not affect our results,
and for reasonable values has very little effect on the variance.
We denote the sampled configuration R1 = R + �R obtained
as described above by Pip(R1,R) = Gip(R,R′)

∏
i<j

rij ′
r ′
ij ′

,

where the product of the Bethe-Peirls condition is only over
the pairs that are within the cutoff distance.
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To include importance sampling, we use the antithetic
plus-minus sampling often used in nuclear quantum Monte
Carlo calculations [20], for the center of mass variables, and
the relative coordinates beyond the cutoff. For these, the
Gaussians have the same probability of taking the opposite
sign. Therefore, it is equally probable for us to have sampled
the configuration R2 = R − (R1 − R).

A divergence in the local energy at the sampled point R1

can occur exactly as in the variational calculations. To avoid
this, two additional configuration are also considered. These
are obtained by interchanging the closest pair from R1 and R2.
Finally, a new configuration is chosen among the Ri according
to

�T (R′)
�T (R) G(R′,R)∑
j

�T (Rj )
�T (R) G(Rj ,R)

∑
j

Pip(Rj ,R). (17)

By performing this choice, the importance sampled
�T (R′)
�T (R) G(R′,R) is recovered by through the weight

W (R′) =
∑

j

�T (Rj )
�T (R) G(Rj ,R)∑
j Pip(Rj ,R)

. (18)

III. RESULTS AND DISCUSSION

In the unitary limit, the resonant character of the interactions
of a Fermi gas makes the system have only two possible
energy scales: the chemical potential μ and the Fermi energy
EF . Therefore these two quantities must be proportional,
μ = ξEF . As the temperature approaches zero, the reduced
chemical potential μ/EF saturates to the universal value ξ . Of
course, in this limit, μ converges to the system ground-state
energy. The value of ξ has been accurately measured: ξ =
0.376(4) [21]. However, a more recent work [22] suggests
corrections to this value, resulting in ξ = 0.370(9). If the
atomic interaction is described by finite-range pseudopoten-
tials, determining accurate values of ξ requires a careful
extrapolation to zero effective range [4]. Our result for this
quantity, also known as the Bertsch parameter, is ξ = 0.390(2),
obtained by simulating a system with 66 particles. It is obtained
in a straightforward manner, subject only to the fixed-node
approximation and finite-size dependence. The determined
value is in reasonable agreement with the experimental one.
We have observed that there is only a small dependence of this
quantity on the number of particles in our simulations, as also
reported in Ref. [23]. The energy we can obtain is in agreement
with the best fixed-node diffusion Monte Carlo calculations
performed using finite effective range interactions; in Ref. [24]
using the auxiliary-field quantum Monte Carlo and a exact
lattice technique, ξ was determined as 0.372(5).

The strong interacting Fermi gases described by contact
interactions obey a number of universal relations characterized
by a single parameter dubbed the contact C by Tan [25]. As
shown by Zhang and Leggett [26] the contact is able to enclose
all of the many-body physics. The contact density integrated
in the whole space gives the contact, which is proportional to
the number of pairs with opposite spins that are close together.
Its value can also be computed straightforwardly from our
calculations. Before computing its value it is useful to extract
a related constant ζ from the pair distribution function of

FIG. 1. (Color online) Pair distribution function of unlike-spin
pairs as a function of the distance. Our quantum Monte Carlo (QMC)
results are for a system with 66 particles. The solid line is the best
fit of b0 + b/(kF r)2 to the extrapolated points. For completeness we
have included results for the Jastrow-Slater model for a nonsuperfluid
system of particles [16]. The inset presents the same distributions
multiplied by (kF r)2 as a function of the distance.

unlike-spin pairs as a function of the distance presented in
Fig. 1. At the unitary limit and for small distances [8]

g↑,↓(kF r) → 9π

20

ζ

(kf r)2
. (19)

This is because the pair distribution function of particles with
opposite spins separated by small distances satisfies in a first
approximation g(r) ∝ f 2(r). The behavior of g↑,↓(kF r) at
small distances confirms with what we expect from Eq. (19) as
we can verify from the inset of Fig. 1. If we modify the fit by
imposing b0 = 0 we have estimated ζ = 0.755(1). This value
is slightly smaller that the one obtained with a fit where b0 is
a free parameter. With this fit, it also becomes more clear that
a perfect agreement between the DMC results and the fitted
black line in the inset of Fig. 1 occurs for small values of kF r .
The BCS result is shifted to the right of the Jastrow-Slater,
most probably due to a large delocalization of the particles in
the superfluid state.

The relation between the constant ζ and the contact
parameter at unitarity is simple, C/k4

F = 2ζ/5π [8]. However
to make the comparison with experimental data easy, we report
this quantity in terms of the contact per unit volume given
by C/NkF = 3π2C/k4

F . Our result, C = 2.848(1), is slightly
below two recent measurements. A Bragg spectroscopy ex-
periment [27] gives the value 3.06 ± 0.08 at the temperature
T/TF = 0.08. A measurement using radio-frequency spec-
troscopy gives 2.9 ± 0.3 at (kF a)−1 = −0.08 and T/TF =
0.18(2), a temperature slightly above the transition temperature
Tc [28]. Our computed value is closer to the experimental
values than previous results determined with a finite-range
potential [8].
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FIG. 2. (Color online) Momentum density distribution n(k/kF )
multiplied by (k/kF )4 as a function of k/kF . In the inset we show
n(k/kF ) as a function of k/kF . The solid line shows our estimated
value of C. The experimental data is for an inhomogeneous gas [29].

The contact C remarkably controls short-distance correla-
tions. On the other hand, the momentum distribution nσ (k) in
the spin state σ for large enough momenta is given by nσ (k) =
C/k4. We have computed the quantity n(k/kF )(k/kF )4 as a
function of k/kF , and our results are shown in Fig. 2. The
contact term is dominant for momentum states larger than
approximately 1.6kF , as we can see from the figure. This
dominance is expected since n(k/kF )(k/kF )4 → 2

3π2NkF
C.

Although the estimated values of n(k/kF )(k/kF )4 are noisy
for large momenta, it is possible to observe a trend towards
the value of C, estimated from the pair correlation function,
and displayed as a solid line. The less than optimal agreement
of our results with the experimental data might come from
various sources. It might be due to calculations done at
zero temperature while the experiments are, of course, done
at finite temperature. Other possibilities might include the
asymptotic form we have considered for the guide function; it
eventually needs to be improved by including more long-range
correlations. However, it is worthwhile mentioning that other
DMC calculations [5] would also overestimate the values of
n(k/kF ) at low values of k.

IV. SUMMARY

In summary, we have performed diffusion Monte Carlo
calculations of a system interacting with a contact interaction.
This has allowed us to have a more faithful description of
dilute ultracold Fermi gases at unitarity that opens possibilities
of more accurate and precise calculations of other important
quantities associated with this system. The application of this
approach has allowed us to compute such quantities as the
reduced chemical potential and Tan’s contact parameter in
better agreement with experiment than some previous calcu-
lations. We have introduced an alternative way of studying
ultracold atoms in the unitary limit, which will be of value
in the investigation of these systems, and in other situations

where a description using a finite effective range interaction
might be inaccurate.
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APPENDIX: SAMPLING THE UNITARY PROPAGATOR

We will begin by looking at the dominant part of the wave
function when an opposite spin pair have a small separation. In
this case, we can approximate the trial wave function ratio as

�T (R)

�T (R′)
∼ r ′

r
. (A1)

Since the propagator consists of the free particle Gaussian
in all channels except the s-wave, we separate it into the usual
spherical coordinates r , cos θ , and φ. Starting with the free
particle propagator, we take the z axis along the initial value
r ′ (note we use primed coordinate for the initial value here
for convenience; in the main text the initial coordinates are
unprimed and the sampled coordinates are primed), and write
the importance-sampled Gaussian as

r ′

r

1

(2πσ 2)3/2
e
− |r−r′ |2

2σ2 = r ′

r

1

(2πσ 2)3/2
e
− r2+r′2

2σ2 e
rr′
σ2 cos θ

. (A2)

Normalizing the cos θ part

∫ 1

−1
d cos θe

rr′
σ2 cos θ = 2σ 2

rr ′ sinh

(
rr ′

σ 2

)
(A3)

given an r and r ′ value, we can sample the angular part from

pφ(φ) = 1

2π

pθ (cos θ ) = rr ′

2σ 2 sinh
(

rr ′
σ 2

)e
rr′
σ2 cos θ

. (A4)

Once we know r , we can sample cos θ by sampling a uniform
random number 0 < ξ < 1 and

cos θ = 1 + σ 2

rr ′ ln[ξ (1 − e
− 2rr′

σ2 ) + e
− 2rr′

σ2 ] (A5)
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The importance-sampled Gaussian is now

r ′

r

1

(2πσ 2)3/2
e
− |r−r′ |2

2σ2

= pφ(φ)pθ (cos θ )
1√

2πσr2
[e− (r−r′ )2

2σ2 − e
− (r+r′ )2

2σ2 ]. (A6)

The integral of the r part over r2dr is∫ ∞

0
dr

1√
2πσ

[e− (r−r′ )2
2σ2 − e

− (r+r′ )2
2σ2 ] = erf

(
r ′

σ
√

2

)
. (A7)

We now look at the extra piece from the unitary s-wave
interaction. It has the importance-sampled form

r ′

r

√
2π

4π2σrr ′ e
− (r+r′ )2

2σ2 . (A8)

Here the angular part is isotropic, so we can sample the angles
from

pφ(φ) = 1

2π

p
(0)
θ (cos θ ) = 1

2
(A9)

and the importance-sampled function becomes

r ′

r

√
2π

4π2σrr ′ e
− (r+r′ )2

2σ2 = pφ(φ)p(0)
θ (cos θ )

√
2

π

1

σr2
e
− (r+r′ )2

2σ2 .

(A10)
The integral of the r part over r2dr is

∫ ∞

0
dr

√
2

π

1

σ
e
− (r+r′ )2

2σ2 = 1 − erf

(
r ′

σ
√

2

)
. (A11)

When we add the normalizations of Eqs. (A7) and (A11), we
get 1, since we should get e−E0τ , and with the ground-state
energy E0 = 0 since there is no bound state for the unitary
gas.

This suggests a way to sample the propagator. We first
sample the r value, with probability that the r value was
sampled from the Gaussian we sample cos θ from pθ (cos θ ),
otherwise, we sample cos θ uniformly. In either case, we
sample φ uniformly.

The basic idea below is to sample from a one-dimensional
Gaussian centered at r ′. This corresponds to the first term of
gs . If the resulting r is greater than zero, then it is a legal
value. With probability given by the ratio of the radial part of

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-3 -2 -1  0  1  2  3  4  5

g

r/σ

g0g0
gs w/abs value

gs

FIG. 3. (Color online) The sampling of the radial part of the
propagator is illustrated. We sample from the gaussian centered
around r ′, in this case taken to be σ . The probability of this being
from the free Gaussian is shown as the (red) g0 region. It is the
difference between the sampled Gaussian and the Gaussian centered
around −r ′, also shown. The (blue) gs region is half the probability of
sampling from the s-wave propagator. If we take the absolute value
of the sampled value when it is negative, the samples are from the
(green) gs w/abs region, which gives the other half of the s-wave
propagator.

G0 divided by the sampled one-dimensional Gaussian, we take
this r as being sampled from G0, and sample cos θ accordingly.

If not, the rejected terms have been sampled from the e
− (r+r′ )2

2σ2 ,
so they are half of the s-wave term. If the resulting sampled r

is negative, we take its absolute value and it is also sampled
from the s-wave term.

Our algorithm is as follows:
Sample a φ uniformly on 0 < φ < 2π or equivalent.
Sample a random variate y from a Gaussian with mean zero

and variance 1.
The r sample is r = |r ′ + σy|.
If (r ′ + σy) � 0 sample cos θ uniformly. The sampling is

complete.
If (r ′ + σy) > 0 then sample a random variate 0 < ξ < 1

uniformly.

If ξ < e
− 2rr′

σ2 sample cos θ uniformly, else sample cos θ from
pθ (cos θ ).

A graph of the various terms is shown in Fig. 3.
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