8 research outputs found

    Genomic BLUP including additive and dominant variation in purebreds and F1 crossbreds, with an application in pigs

    Get PDF
    Background: Most developments in quantitative genetics theory focus on the study of intra-breed/line concepts. With the availability of massive genomic information, it becomes necessary to revisit the theory for crossbred populations. We propose methods to construct genomic covariances with additive and non-additive (dominance) inheritance in the case of pure lines and crossbred populations. Results: We describe substitution effects and dominant deviations across two pure parental populations and the crossbred population. Gene effects are assumed to be independent of the origin of alleles and allelic frequencies can differ between parental populations. Based on these assumptions, the theoretical variance components (additive and dominant) are obtained as a function of marker effects and allelic frequencies. The additive genetic variance in the crossbred population includes the biological additive and dominant effects of a gene and a covariance term. Dominance variance in the crossbred population is proportional to the product of the heterozygosity coefficients of both parental populations. A genomic BLUP (best linear unbiased prediction) equivalent model is presented. We illustrate this approach by using pig data (two pure lines and their cross, including 8265 phenotyped and genotyped sows). For the total number of piglets born, the dominance variance in the crossbred population represented about 13 % of the total genetic variance. Dominance variation is only marginally important for litter size in the crossbred population. Conclusions: We present a coherent marker-based model that includes purebred and crossbred data and additive and dominant actions. Using this model, it is possible to estimate breeding values, dominant deviations and variance components in a dataset that comprises data on purebred and crossbred individuals. These methods can be exploited to plan assortative mating in pig, maize or other species, in order to generate superior crossbred individuals in terms of performance

    Genomic analysis of dominance effects on milk production and conformation traits in Fleckvieh cattle

    Get PDF
    Background Estimates of dominance variance in dairy cattle based on pedigree data vary considerably across traits and amount to up to 50% of the total genetic variance for conformation traits and up to 43% for milk production traits. Using bovine SNP (single nucleotide polymorphism) genotypes, dominance variance can be estimated both at the marker level and at the animal level using genomic dominance effect relationship matrices. Yield deviations of high-density genotyped Fleckvieh cows were used to assess cross-validation accuracy of genomic predictions with additive and dominance models. The potential use of dominance variance in planned matings was also investigated. Results Variance components of nine milk production and conformation traits were estimated with additive and dominance models using yield deviations of 1996 Fleckvieh cows and ranged from 3.3% to 50.5% of the total genetic variance. REML and Gibbs sampling estimates showed good concordance. Although standard errors of estimates of dominance variance were rather large, estimates of dominance variance for milk, fat and protein yields, somatic cell score and milkability were significantly different from 0. Cross-validation accuracy of predicted breeding values was higher with genomic models than with the pedigree model. Inclusion of dominance effects did not increase the accuracy of the predicted breeding and total genetic values. Additive and dominance SNP effects for milk yield and protein yield were estimated with a BLUP (best linear unbiased prediction) model and used to calculate expectations of breeding values and total genetic values for putative offspring. Selection on total genetic value instead of breeding value would result in a larger expected total genetic superiority in progeny, i.e. 14.8% for milk yield and 27.8% for protein yield and reduce the expected additive genetic gain only by 4.5% for milk yield and 2.6% for protein yield. Conclusions Estimated dominance variance was substantial for most of the analyzed traits. Due to small dominance effect relationships between cows, predictions of individual dominance deviations were very inaccurate and including dominance in the model did not improve prediction accuracy in the cross-validation study. Exploitation of dominance variance in assortative matings was promising and did not appear to severely compromise additive genetic gain

    Quantitative genetics theory for genomic selection and efficiency of genotypic value prediction in open-pollinated populations

    Full text link
    ABSTRACT: Quantitative genetics theory for genomic selection has mainly focused on additive effects. This study presents quantitative genetics theory applied to genomic selection aiming to prove that prediction of genotypic value based on thousands of single nucleotide polymorphisms (SNPs) depends on linkage disequilibrium (LD) between markers and QTLs, assuming dominance and epistasis. Based on simulated data, we provided information on dominance and genotypic value prediction accuracy, assuming mass selection in an open-pollinated population, all quantitative trait loci (QTLs) of lower effect, and reduced sample size. We show that the predictor of dominance value is proportional to the square of the LD value and to the dominance deviation for each QTL that is in LD with each marker. The weighted (by the SNP frequencies) dominance value predictor has greater accuracy than the unweighted predictor. The linear × linear, linear × quadratic, quadratic × linear, and quadratic × quadratic SNP effects are proportional to the corresponding linear combinations of epistatic effects for QTLs and the LD values. LD between two markers with a common QTL causes a bias in the prediction of epistatic values. Compared to phenotypic selection, the efficiency of genomic selection for genotypic value prediction increases as trait heritability decreases. The degree of dominance did not affect the genotypic value prediction accuracy and the approach to maximum accuracy is asymptotic with increases in SNP density. The decrease in the sample size from 500 to 200 did not markedly reduce the genotypic value prediction accuracy

    Ancestral relationships using metafounders: Finite ancestral populations and across population relationships.

    No full text
    ABSTRACT.Recent use of genomic (marker-based) relationships shows that relationships exist within and across base population (breeds or lines). However, current treatment of pedigree relationships is unable to consider relationships within or across base populations, although such relationships must exist due to finite size of the ancestral population and connections between populations. This complicates the conciliation of both approaches and, in particular, combining pedigree with genomic relationships. We present a coherent theoretical framework to consider base population in pedigree relationships. We suggest a conceptual framework that considers each ancestral population as a finite-sized pool of gametes. This generates across-individual relationships and contrasts with the classical view which each population is considered as an infinite, unrelated pool. Several ancestral populations may be connected and therefore related. Each ancestral population can be represented as a ?metafounder,? a pseudo-individual included as founder of the pedigree and similar to an ?unknown parent group.? Metafounders have self- and across relationships according to a set of parameters, which measure ancestral relationships, i.e., homozygozities within populations and relationships across populations. These parameters can be estimated from existing pedigree and marker genotypes using maximum likelihood or a method based on summary statistics, for arbitrarily complex pedigrees. Equivalences of genetic variance and variance components between the classical and this new parameterization are shown. Segregation variance on crosses of populations is modeled. Efficient algorithms for computation of relationship matrices, their inverses, and inbreeding coefficients are presented. Use of metafounders leads to compatibility of genomic and pedigree relationship matrices and to simple computing algorithms. Examples and code are given. © 2015 by the Genetics Society of America

    The long-term effects of genomic selection: allele frequency changes and fixation of loci

    No full text
    Allele frequencies change due to drift and selection. We investigated those changes for different selection methods. We simulated a livestock population with 50 generations of selection for an additive trait controlled by 2,000 segregating loci at the start of selection. Our results show that the average absolute change in allele frequency with genomic selection was slightly higher than with pedigree selection, and considerably higher than with mass selection. Genomic and pedigree selection both resulted in fixation of roughly three times more loci than mass selection, and roughly five times more loci became fixed for the unfavourable allele. While this was mainly a result of increased genetic drift, genomic selection also lost additional favourable alleles due to hitchhiking. This suggests that genomic selection can limit long-term genetic gain

    Partitioning of the genetic trends of French dairy sheep in Mendelian samplings and long-term contributions

    Get PDF
    ABSTRACT: The genetic trend of milk yield for 4 French dairy sheep breeds (Lacaune, Basco-BĂ©arnaise, Manech TĂȘte Noire, and Manech TĂȘte Rousse) was partitioned in Mendelian sampling trends by categories of animals defined by sex and by selection pathways. Five categories were defined, as follows: (1) artificial insemination (AI) males (after progeny testing), (2) males discarded after progeny testing, (3) natural mating males, (4) dams of males, and (5) dams of females. Dams of males and AI males were the most important sources of genetic progress, as observed in the decomposition in Mendelian sampling trends. The yearly contributions were more erratic for AI males than for dams of males, as AI males are averaged across a smaller number of individuals. Natural mating males and discarded males did not contribute to the trend in terms of Mendelian sampling, as their estimated Mendelian sampling term is either null (natural mating males) or negative (discarded males). Overall, in terms of Mendelian sampling, females contributed more than males to the total genetic gain, and we interpret that this is because females constitute a larger pool of genetic diversity. In addition, we computed long-term contributions from each individual to the following pseudo-generations (one pseudo-generation spanning 4 years). With this information, we studied the selection decisions (selected or not selected) for females, and the contributions to the following generations. Mendelian sampling was more important than parent average to determine the selection of individuals and their long-term contributions. Long-term contributions were greater for AI males (with larger progeny sizes than females) and in Basco-BĂ©arnaise than in Lacaune (with the latter being a larger population)
    corecore