160 research outputs found

    Using network science in the language sciences and clinic

    Get PDF
    A number of variables—word frequency, word length—have long been known to influence language processing. We briefly review the effects in speech perception and production of two more recently examined variables: phonotactic probability and neighborhood density. We then describe a new approach to study language, network science, which is an interdisciplinary field drawing from mathematics, computer science, physics, and other disciplines. In this approach, nodes represent individual entities in a system (i.e., phonological word-forms in the lexicon), links between nodes represent relationships between nodes (i.e., phonological neighbors), and various measures enable researchers to assess the micro-level (i.e., the individual word), the macro-level (i.e., characteristics about the whole system), and the meso-level (i.e., how an individual fits into smaller sub-groups in the larger system). Although research on individual lexical characteristics such as word-frequency has increased our understanding of language processing, these measures only assess the “micro-level.” Using network science, researchers can examine words at various levels in the system, and how each word relates to the many other words stored in the lexicon. Several new findings using the network science approach are summarized to illustrate how this approach can be used to advance basic research as well as clinical practice

    The influence of 2-hop network density on spoken word recognition

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.3758/s13423-016-1103-9The influence of 2-hop density on spoken word recognition was investigated. 2-hop density measures the density of connections among the phonological neighbors (i.e., 1-hop neighbors) and phonological neighbors of those neighbors (i.e., 2-hop neighbors) of a target word. In both naming and lexical decision tasks, words with low 2-hop density were recognized more quickly than words with high 2-hop density. Because stimuli were selected such that the number of 1-hop and 2-hop neighbors were matched across both sets of words, the results suggest that spoken word recognition is influenced by the amount of connectivity among distant neighbors of the target word—a result that is not easily accommodated by current models of spoken word recognition. A diffusion of activation framework is proposed to account for the present finding

    Processing of indexical information requires time: Evidence from change deafness

    Get PDF
    Studies of change detection have increased our understanding of attention, perception, and memory. In two innovative experiments we showed that the change detection phenomenon can be used to examine other areas of cognition—specifically, the processing of linguistic and indexical information in spoken words. One hypothesis suggests that cognitive resources must be used to process indexical information, whereas an alternative suggests that it is processed more slowly than linguistic information. Participants performed a lexical decision task and were asked whether the voice presenting the stimuli changed. Nonwords varying in their likeness to real words were used in the lexical decision task to encourage participants to vary the amount of cognitive resources/processing time. More cognitive resources/processing time are required to make a lexical decision with word-like nonwords. Participants who heard word-like nonwords were more likely to detect the change when it occurred (Experiment 1) and were more confident that the voice was the same when it did not change (Experiment 2). These results suggest that indexical information is processed more slowly than linguistic information and demonstrate how change detection can provide insight to other areas of cognition

    Lexicality and frequency in specific language impairment: accuracy and error data from two nonword repetition tests

    Get PDF
    Purpose: Deficits in phonological working memory and deficits in phonological processing have both been considered potential explanatory factors in Specific Language Impairment (SLI). Manipulations of the lexicality and phonotactic frequency of nonwords enable contrasting predictions to be derived from these hypotheses. Method: 18 typically developing (TD) children and 18 children with SLI completed an assessment battery that included tests of language ability, non-verbal intelligence, and two nonword repetition tests that varied in lexicality and frequency. Results: Repetition accuracy showed that children with SLI were unimpaired for short and simple high lexicality nonwords, whereas clear impairments were shown for all low lexicality nonwords. For low lexicality nonwords, greater repetition accuracy was seen for nonwords constructed from high over low frequency phoneme sequences. Children with SLI made the same proportion of errors that substituted a nonsense syllable for a lexical item as TD children, and this was stable across nonword length. Conclusions: The data show support for a phonological processing deficit in children with SLI, where long-term lexical and sub-lexical phonological knowledge mediate the interpretation of nonwords. However, the data also suggest that while phonological processing may provide a key explanation of SLI, a full account is likely to be multi-faceted

    Methods for Minimizing the Confounding Effects of Word Length in the Analysis of Phonotactic Probability and Neighborhood Density

    Get PDF
    This is the author's accepted manuscript. The original is available at http://jslhr.pubs.asha.org/article.aspx?articleid=1781521&resultClick=3Recent research suggests that phonotactic probability (the likelihood of occurrence of a sound sequence) and neighborhood density (the number of words phonologically similar to a given word) influence spoken language processing and acquisition across the lifespan in both normal and clinical populations. The majority of research in this area has tended to focus on controlled laboratory studies rather than naturalistic data such as spontaneous speech samples or elicited probes. One difficulty in applying current measures of phonotactic probability and neighborhood density to more naturalistic samples is the significant correlation between these variables and word length. This study examines several alternative transformations of phonotactic probability and neighborhood density as a means of reducing or eliminating this correlation with word length. Computational analyses of the words in a large database and reanalysis of archival data supported the use of z scores for the analysis of phonotactic probability as a continuous variable and the use of median transformation scores for the analysis of phonotactic probability as a dichotomous variable. Neighborhood density results were less clear with the conclusion that analysis of neighborhood density as a continuous variable warrants further investigation to differentiate the utility of z scores in comparison to median transformation scores. Furthermore, balanced dichotomous coding of neighborhood density was difficult to achieve, suggesting that analysis of neighborhood density as a dichotomous variable should be approached with caution. Recommendations for future application and analyses are discussed

    Effects Of Length, Complexity, And Grammatical Correctness On Stuttering In Spanish-Speaking Preschool Children

    Get PDF
    Purpose: To explore the effects of utterance length, syntactic complexity, and grammatical correctness on stuttering in the spontaneous speech of young, monolingual Spanish-speaking children. Method: Spontaneous speech samples of 11 monolingual Spanish-speaking children who stuttered, ages 35 to 70 months, were examined. Mean number of syllables, total number of clauses, utterance complexity (i.e., containing no clauses, simple clauses, or subordinate and/or conjoined clauses), and grammatical correctness (i.e., the presence or absence of morphological and syntactical errors) in stuttered and fluent utterances were compared. Results: Findings revealed that stuttered utterances in Spanish tended to be longer and more often grammatically incorrect, and contain more clauses, including more subordinate and/or conjoined clauses. However, when controlling for the interrelatedness of syllable number and clause number and complexity, only utterance length and grammatical incorrectness were significant predictors of stuttering in the spontaneous speech of these Spanish-speaking children. Use of complex utterances did not appear to contribute to the prediction of stuttering when controlling for utterance length. Conclusions: Results from the present study were consistent with many earlier reports of English-speaking children. Both length and grammatical factors appear to affect stuttering in Spanish-speaking children. Grammatical errors, however, served as the greatest predictor of stuttering.Communication Sciences and Disorder
    • 

    corecore