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Abstract 

The influence of 2-hop density on spoken word recognition was investigated. 2-hop density 

measures the density of connections among the phonological neighbors (i.e., 1-hop neighbors) 

and phonological neighbors of those neighbors (i.e., 2-hop neighbors) of a target word. In both 

naming and lexical decision tasks, words with low 2-hop density were recognized more quickly 

than words with high 2-hop density. Because stimuli were selected such that the number of 1-hop 

and 2-hop neighbors were matched across both sets of words, the results suggest that spoken 

word recognition is influenced by the amount of connectivity among distant neighbors of the 

target word—a result that is not easily accommodated by current models of spoken word 

recognition. A diffusion of activation framework is proposed to account for the present findings.  
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It is widely-accepted that during spoken word recognition phonological neighbors, or 

words that sound similar to the target word, are activated and subsequently compete with the 

target word for recognition. Furthermore, numerous studies have found that words with fewer 

competitors or phonological neighbors are recognized more quickly and accurately than words 

with many competitors or phonological neighbors (for a review see Vitevitch & Luce, 2016).   

In addition to the number of phonological neighbors influencing spoken word 

recognition, it has been shown that the internal structure of a word’s neighborhood also 

influences spoken word recognition. The internal structure of a word’s neighborhood can be 

quantified via the clustering coefficient, C, which represents the extent to which a word’s 

neighbors are also neighbors of each other. Recent work has shown that C influences various 

aspects of language processing, including spoken word recognition (Chan & Vitevitch, 2009), 

word production (Chan & Vitevitch, 2010), word learning (Goldstein & Vitevitch, 2014), and 

short- and long-term memory processing (Vitevitch, Chan, & Roodenrys, 2012). In general, 

controlling for neighborhood size, words with low C (less interconnected neighborhoods) are 

recognized and produced more quickly and accurately than words with high C (more 

interconnected neighborhoods).  

The influence of C on processing suggests that simply counting the number of 

phonological neighbors may not capture all of the sources of competition that occur during word 

recognition. Rather, it appears that activation and competition are also influenced by subtle 

differences in the structure of a word’s neighborhood, and not simply modulated by the number 

of activated, competing word-forms. Given that prior work has shown that the connectivity of a 

word’s immediate neighborhood influences lexical processing (as measured by C), the present 

report investigated if the connectivity of a word’s distant neighbors also influences processing. 
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The results reported in Siew and Vitevitch (2016) strongly suggest that it is important to 

consider the influence of a word’s distant neighbors on language processing. Siew and Vitevitch 

identified words residing in the largest connected component of the phonological language 

network consisting of over 6000 words (giant component words) and words residing in smaller 

connected components of the network, ranging in size from 2 to 53 (lexical island words). Words 

were matched on a number of lexical characteristics, and differed only on the number of distant 

neighbors. Giant component words, which reside in the largest connected component of the 

network, have several more distant neighbors as compared to lexical island words, which are 

found in smaller connected components of the network. 

Lexical island words were more quickly responded to than giant component words in 

various tasks. Siew and Vitevitch suggest that, as compared to giant component words, lexical 

island words had fewer competitors overall and were therefore able to “stand out” more and thus 

more readily recognized. On the other hand, giant component words had several distant 

neighbors overall that made it difficult for these words to stand out from its competitors and thus 

less readily recognized. Given that these results demonstrated that the mere presence (number) of 

distant connections has measurable effects on spoken word recognition, the present paper 

examines whether the connectivity of a word’s distant neighbors also influences spoken word 

recognition.  

To quantify the connectivity of a word’s distant neighbors, I used the computational tools 

of Network Science, an emerging area of complexity science that uses mathematical techniques 

to study complex systems in diverse fields such as telecommunications and biological systems 

(Barabási, 2009). The tools of Network Science have also been applied in the cognitive and 
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language sciences to investigate how the organization of phonological word-forms in the mental 

lexicon influences language processing (Vitevitch, 2008).  

In the phonological network of language described in Vitevitch (2008), links were placed 

between words that were phonologically similar to each other. Two words were considered 

phonologically similar if the first word could be transformed to the other by either substituting, 

adding, or deleting one phoneme in any position (Luce & Pisoni, 1998). Based on this 

operationalization, words such as /c^t/  (“cut”) and  /æt/ (“at”) are phonological neighbors of the 

target word /kæt/ (“cat”). These words are immediate phonological neighbors of /k@t/ (i.e., the 

grey nodes in Figure 1). On the other hand, words such as  /c^p/ (“cup”) and /ænt/ (“ant”) are 

distant phonological neighbors of /kæt/ because they are indirectly connected to the target via 

/c^t/ and /æt/ respectively (i.e., the white nodes in Figure 1). Although it is possible to consider 

the interconnectivity of distant neighbors that are several steps removed from the target (in some 

cases up to 29 steps; see Vitevitch, Goldstein, & Johnson, 2016), in the present paper I focus on 

the interconnectivity of the distant neighbors that are 2 steps removed from the target (i.e., the 

white nodes in Figure 1). To examine if the level of connectivity of distant neighbors influences 

lexical processing, I introduce a new Network Science metric known as 2-hop density, which 

measures the level of interconnectivity that exists among a word’s immediate and distant 

neighbors, and make use of conventional psycholinguistic tasks to determine whether any 

processing differences exist for words with high or low 2-hop density. 

 

**FIGURE 1 ABOUT HERE** 

 

Experiment 1: Naming 
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In the present experiment, a conventional psycholinguistic task was used to examine how 

2-hop density might influence lexical processing. In the auditory naming task participants 

repeated the words they heard out loud as quickly and accurately as possible.  

Method 

Participants. Thirty native English speakers were recruited from the Introductory 

Psychology subject pool at the University of Kansas. All participants had no previous history of 

speech or hearing disorders and received partial course credit for their participation.   

Materials. Forty English words were selected as stimuli. Half of the stimuli had high 2-

hop density and half had low 2-hop density. A male native speaker of American English 

produced the stimuli by speaking at a normal speaking rate into a high-quality microphone in an 

Industrial Acoustics Company sound-attenuated booth. Individual sound files for each word were 

edited from the digital recording with SoundEdit16 (Macromedia, Inc). The Normalization 

function in SoundEdit16 was used to ensure that all sound files were comparable in amplitude. 

Due to a recording error, one low 2-hop density word (“scurry”) was excluded from all 

subsequent analyses. Therefore there were 20 high 2-hop density words and 19 low 2-hop 

density words.  

Stimuli comparisons. Word stimuli were selected such that high and low 2-hop density 

words were matched on a number of characteristics known to influence processing. These 

include traditional lexical variables such as word length (number of phonemes), number of 

syllables, subjective familiarity (measured on a 7 point scale, where 7 indicates “You recognize 

the word and are confident that you know the meaning of the word” and 1 indicates “You have 

never seen the word before”; Nusbaum, Pisoni, & Davis, 1984), word frequency (represented by 

log-base 10 of frequency counts from the SUBTLEXUS corpus; Brysbaert & New, 2009), age of 
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acquisition ratings (Kuperman, Stadthagen-Gonzalez, & Brysbaert, 2012), neighborhood 

frequency (mean word frequency of the phonological neighbors of a word), phonotactic 

probability (positional segment probability: probability that a segment occurs in a certain 

position of a word; biphone probability: probability that two adjacent segments co-occur in a 

word; Vitevitch & Luce, 2004), as well as network science measures such as number of 

phonological neighbors (also known as degree in the network science literature), clustering 

coefficient, and number of 2-hop neighbors. The duration and amplitude of sound files for these 

words were also matched. Descriptive statistics and t-tests for the stimulus comparisons are 

shown in Table 1. As the network science measures were more recently developed as compared 

to the traditional psycholinguistic variables, I describe the network science measures in more 

detail below.  

1-hop degree. Within the context of the phonological network, 1-hop degree refers to the 

number of words that are directly connected to the target word. These words are also known as 

1-hop neighbors because they are one “hop” or step away from the target node (i.e., the grey 

nodes in Figure 1). For a given target word /kæt/ (“cat”), examples of 1-hop neighbors include 

/k^t/ (“cut”) and /æt/ (“at”). In the traditional psycholinguistic literature, these words are 

considered to be phonological neighbors of the target word (Luce & Pisoni, 1998). To be 

consistent with the terminology used in the network science literature, from here on 1-hop 

degree will be used to refer to the number of words that are directly connected to the target word 

(i.e., number of 1-hop neighbors). 

Clustering coefficient. Clustering coefficient, C, refers to the extent to which the 

(immediate) 1-hop neighbors of a word are also neighbors of each other. To calculate C, the 

number of connections between 1-hop neighbors of a target word was counted and divided by 
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the number of possible connections that could exist among the 1-hop neighbors. Therefore, C is 

the ratio of the actual number of connections existing among 1-hop neighbors to the number of 

all possible connections among 1-hop neighbors if every 1-hop neighbor were connected 

(Batagelj & Mrvar, 1998). For a definition of C in the context of the phonological network see 

Chan and Vitevitch (2010). C ranges from 0 to 1; when C = 1 all 1-hop neighbors of a word are 

neighbors of each other, and when C = 0 no 1-hop neighbors of a word are neighbors of each 

other.  

2-hop degree. Within the context of the phonological network, 2-hop degree refers to the 

number of words that are indirectly connected to the target word via the target’s immediate 

neighbors. These words are also known as 2-hop neighbors because they are two “hops” or 

steps away from the target node (i.e., the white nodes in Figure 1). For a given target word /kæt/ 

(“cat”), examples of 2-hop neighbors include /k^p/ (“cup”) and /ænt/ (“ant”), which are 

indirectly connected to the target via its 1-hop neighbors /k^t/ (“cut”) and /æt/ (“at”) respectively. 

To be consistent with the terminology used in the network science literature, from here on 2-hop 

degree will be used to refer to the number of words that are directly connected to the target word 

(i.e., number of 2-hop neighbors). 

2-hop density. Mathematically, 2-hop density is calculated in a similar manner as 

clustering coefficient. Note that Vitevitch et al. (2012) reported that 1-hop degree and C are not 

correlated; by extension one would not expect 2-hop degree and 2-hop density to be correlated. 

Whereas C represents the ratio of the actual number of connections existing among a word’s 1-

hop neighbors to the number of all possible connections among its 1-hop neighbors, 2-hop 

density represents the ratio of the actual number of connections existing among a word’s 1-hop 

and 2-hop neighbors to the number of all possible connections among its 1-hop and 2-hop 
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neighbors. These values were calculated in Gephi, a freely accessible graph visualization 

software (Bastian et al., 2009). Therefore, 2-hop density is a measure of the level of 

interconnectivity among a word’s 1-hop and 2-hop neighbors.  

As high 2-hop density words and low 2-hop density words are matched on the number of 

2-hop neighbors (2-hop degree), the number of 1-hop neighbors (1-hop degree), as well as the 

level of interconnectivity among 1-hop neighbors (as represented by C), the key difference 

between the two sets of words lies in the level of interconnectivity among 2-hop neighbors 

(Figure 1).  

 Procedure. Participants were tested individually. Each participant was seated in front of 

an iMac computer that was connected to a New Micros response box. PsyScope 1.2.2 was used 

to randomize and present the stimuli via BeyerDynamic DT100 headphones at a comfortable 

listening level. A response box containing a dedicated timing board provided millisecond 

accuracy for the recording of response times.  

In each trial, the word “READY” appeared on the screen for 500ms. Participants heard 

one of the randomly selected stimuli and were instructed to repeat the word as quickly and 

accurately as possible. Reaction times were measured from stimulus onset to the onset of the 

participant’s verbal response. Verbal responses were also recorded for offline scoring of 

accuracy. The next trial began 1s after the participant’s response was made. Prior to the 

experimental trials, each participant received 5 practice trials to become familiar with the task; 

these trials were not included in the subsequent analyses. 

Results and Discussion 

Reaction times and accuracy were the dependent variables of interest. Reaction times less 

than 500ms and larger than 2000ms (which approximated +/-2 SD from the mean) were 
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considered to be outliers and were excluded from the data. This resulted in the removal of < 1% 

of the data. Only accurate word responses with reaction times between 500ms and 2000ms were 

included in the analysis of reaction times. A within-participants ANOVA was used to analyze the 

data. 

Participants named low 2-hop density words (M = 931 ms, SD = 109) more quickly than 

high 2-hop density words (M = 950 ms, SD = 104), F (1, 29) = 15.53, p < .001, ηp
2 = .349. There 

were no accuracy differences among low 2-hop density words (M = 99.1%, SD = 2.0) and high 

2-hop density words (M = 98.2%, SD = 3.3), F (1, 29) = 2.10, p = .16, ηp
2 = .068.  

The results from Experiment 1 indicated that words with low 2-hop density were named 

more quickly than words with high 2-hop density—words found in less interconnected 2-hop 

neighborhoods were named more quickly than words found in more interconnected 2-hop 

neighborhoods.  

 

Experiment 2: Lexical Decision 

Experiment 2 sought to replicate the above finding in another commonly used 

psycholinguistic task—auditory lexical decision. Participants are presented with words and 

nonwords and had to decide if the given stimulus was a real word or not. In a lexical decision 

task, the real words are the important stimuli of interest, whereas nonwords (made-up words) 

acted as foils in the experiment. 

Method 

Participants. Forty native English speakers were recruited from the same population 

described in Experiment 1. All participants were right-handed and had no previous history of 

speech or hearing disorders; none took part in Experiment 1.  
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Materials. The word stimuli for the present experiment consisted of the same 40 words 

used in Experiment 1. In addition, a list of 40 phonotactically legal nonwords was constructed by 

replacing a phoneme (at any position except the first and last positions) of the word stimuli with 

another phoneme. For instance, the nonword vilt (/vilt/) was created by replacing /ɔ/ in vault 

(/vɔlt/) with /i/. The phonological transcriptions of nonwords are listed in Appendix B. The 

nonwords were recorded by the same male speaker in a similar manner as in Experiment 1. The 

same method for editing and digitizing the word stimuli was used to create individual sound files 

for each nonword. The Normalization function in SoundEdit16 was used to ensure that all word 

and nonword sound files were comparable in amplitude.  The data obtained for these nonwords 

from the lexical decision task would not be analyzed in the Results section. The duration of the 

stimulus sound files was equivalent across both words and nonwords. 

Procedure. Participants were tested in groups no larger than three. The same equipment 

used in Experiment 1 was used in the present experiment, except that a response box containing 

a dedicated timing board was used to record response times.  

In each trial, the word “READY” appeared on the screen for 500ms. Participants heard 

one of the randomly selected stimuli and were instructed to decide, as quickly and accurately as 

possible, whether the item heard was a real English word or a nonword. If the item was a word, 

participants pressed the button labeled ‘WORD’ with their right (dominant) index finger. If the 

item was a nonword, participants pressed the button labeled ‘NONWORD’ with their left index 

finger. Reaction times were measured from stimulus onset to the onset of the participant’s button 

press. The next trial began 1s after the participants’ response was made. Prior to experimental 

trials, each participant received 8 practice trials to become familiar with the task; these trials 

were not included in the subsequent analysis.  
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Results and Discussion 

Reaction times and accuracy were the dependent variables of interest. Reaction times less 

than 500ms and larger than 2000ms (approximately -/+ 2 SD) were considered to be outliers and 

were excluded from the data. This resulted in the removal of < 1% of the data. Only accurate 

word responses with reaction times between 500ms and 2000ms were included in the analysis of 

reaction times. A within-participants ANOVA was used to analyze the data. 

Participants responded to low 2-hop density words (M = 955 ms, SD = 118) more quickly 

than high 2-hop density words (M = 987 ms, SD = 113), F (1, 39) = 14.30, p = .001, ηp
2 = .268. 

There was no difference in accuracy for the low 2-hop density words (M = 91.45%, SD = 6.6) 

and high 2-hop density words (M = 92.25%, SD = 7.1), Fp (1, 39) < 1, p = .54, ηp
2 = .01 

The results from Experiment 2 mirrored that of Experiment 1—words with low 2-hop 

density were responded to more quickly than words with high 2-hop density. Together, the 

results indicate a processing advantage for words found in less interconnected 2-hop 

neighborhoods as compared to words found in more interconnected 2-hop neighborhoods.  

 

General Discussion 

The present findings showed that the connectivity of distant, indirect phonological 

neighbors influences language processing. Specifically, across both tasks, words with less 

interconnected 2-hop neighborhoods (i.e., low 2-hop density) were responded to more quickly 

than words with more interconnected 2-hop neighborhoods (i.e., high 2-hop density).  

This finding of a processing advantage for words with low 2-hop density compared to 

words with high 2-hop density can be accounted for via a simple diffusion framework 

implemented in the phonological network described by Vitevitch (2008). In this framework, 
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activation is spread back and forth between the target, its 1-hop and 2-hop neighbors, and other 

words in the phonological network. Over time greater amounts of activation remain among 1-hop 

and 2-hop neighbors of words that reside in more interconnected 2-hop neighborhoods (i.e., high 

2-hop density words), rather than diffusing to the rest of the phonological network. On the other 

hand, relatively less activation remains among 1-hop and 2-hop neighbors of words that reside in 

less interconnected 2-hop neighborhoods (i.e, low 2-hop density words) as most of the activation 

spreads to the rest of the phonological network. Based on this account, it is more difficult for a 

high 2-hop density word to “stand out” from its competitors (1-hop and 2-hop neighbors) than 

for a low 2-hop density word to do so. Note that an analogous explanation was used to account 

for the clustering coefficient effect (Chan & Vitevitch, 2009; see also the computer simulation 

reported in Vitevitch et al., 2011). It is worthwhile to briefly note the limitations of the diffusion 

framework described above, particularly with regards to the phonological Levenshtein distance 

(PLD20) effects reported in Suárez, Tan, Yap, and Goh (2011), where lexical hermits (i.e., words 

with no phonological neighbors based on the traditional 1-phoneme similarity metric) with 

“close” Levenshtein neighbors were less quickly recognized than lexical hermits with “distant” 

Levenshtein neighbors (see also Yarkoni, Yap, & Balota, 2008). Within the context of the 

phonological language network these lexical hermits would not possess any direct connections, 

and it is unclear how the diffusion framework might account for PLD20 effects.  

Nevertheless, the finding that the amount of interconnectivity among a word’s indirect 

neighbors influences processing poses a challenge to widely accepted models of spoken word 

recognition and speech perception (such as the Cohort Model (Marslen-Wilson, 1987; Gaskell & 

Marslen-Wilson, 1997), TRACE (McClelland & Elman, 1986), Shortlist B (Norris & McQueen, 

2008), the Neighborhood Activation Model (Luce & Pisoni, 1998) and its computational 
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instantiation PARSYN (Luce, Goldinger, Auer, & Vitevitch, 2000)). Current models of spoken 

word recognition do not explicitly consider how phonological similarity beyond that of a word’s 

local neighbors influences processing. Simulations of jTRACE in Chan and Vitevitch (2009) 

showed that TRACE could not account for the clustering coefficient effect, which is a measure 

of the interconnectivity of the structure of a word’s local neighborhood. However, the diffusion 

network in Vitevitch et al. (2011) was able to account for the clustering coefficient effect. 

Therefore, it is unlikely that TRACE or other models of spoken word recognition could account 

for the present finding that the interconnectivity of a word’s distant structure influences lexical 

retrieval. 

The Network Science approach can advance the field of psycholinguistics in two key 

ways. From a theoretical standpoint, the Network Science approach compels language 

researchers to consider how the structure of the mental lexicon, the part of long-term memory 

where lexical representations are stored, influences various aspects of language processes. 

Within complex systems, researchers recognize that a complete understanding of how a complex 

system works is not possible without also considering the structural properties of that system 

(Strogatz, 2001). Language systems are no exception. However, current models of spoken word 

recognition have typically focused on delineating language processes without an explicit 

consideration of how the structure of the mental lexicon affects these processes.  

From a methodological perspective, the Network Science approach provides language 

researchers with the tools to measure the structure of the mental lexicon at various levels of the 

system. Specific to the phonological network, this approach can be used to model and quantify 

the phonological similarity of words at various levels of the network. Local similarity measures 

such as 1-hop degree (number of immediate phonological neighbors) and C (which quantifies the 
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internal structure of a word’s immediate neighborhood) and broader similarity measures such as 

2-hop degree (number of indirect phonological neighbors) and 2-hop density (which quantifies 

the internal structure of a word’s 2-hop neighborhood) can be generated, which can then be used 

to test specific hypotheses about how the structure of the mental lexicon affects language 

processes.  

Earlier studies showed that the immediate structure of the lexicon influenced processing 

(Chan & Vitevitch, 2010; Goldstein & Vitevitch, 2014; Vitevitch et al., 2012). The experiments 

reported in this paper builds on this body of work by demonstrating, for the first time, that the 

structure of a word’s distant neighborhood influences spoken word recognition as well, 

indicating that lexical processes are sensitive to the level of connectivity among a word’s distant 

neighbors.  
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Appendix A 
 

List of high 2-hop density and low 2-hop density words used in Experiments 1 and 2 
 

High	2-hop	density	words	
	

Low	2-hop	density	words	
basil	

	
blood	

blotch	
	

burly	
cedar	

	
chapel	

cotton	
	

copy	
dealer	

	
crush	

field	
	

donor	
hammer	

	
flower	

launch	
	

glide	
mute	

	
huddle	

muzzle	
	

hustle	
pounce	

	
jockey	

pulp	
	

muffle	
romp	

	
pulley	

scorn	
	

quirk	
shabby	

	
scour	

shiner	
	

scurvy	
shuttle	

	
shiver	

sledge	
	

shrewd	
trust	

	
taps	

vinyl	
	

vault	
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Appendix B 
 

List of nonwords used in Experiment 2 (IPA) 
 

Nonwords	 		 Nonwords	
bizl	 	 blaɪd	
blɛtʃ	 	 boli	
saʊdɚ	 	 tʃægl	
kɑdn	 	 kæpy	
dibɚ	 	 kɹuʃ	
faʊld	 	 dɝnɚ	
hædɚ	 	 flɑɹ	
luntʃ	 	 gɹaɪd	
myot	 	 hodl	
muzl	 	 hɔsl	
pons	 	 ʤuki	
pɛlp	 	 mifl	
rimp	 	 pɛli	
skɛɹn	 	 kwɛk	
ʃæpi	 	 skɔɪɹ	
ʃaɪgɚ	 	 stɝi	
ʃætl	 	 ʃɑvɚ	
slɑʤ	 	 ʃɹʌd	
trost	 	 tɔps	
vʌnl	 		 vilt	
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Figure 1. Illustration of a word with low network density (left) and a word with high network 

density (right). The target word is shown in black, its 1-hop neighbors are shown in gray, its 2-

hop neighbors are shown in white. For visual clarity only a few connections are shown. Note that 

both words have the same number of 1-hop and 2-hop neighbors.  


