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Abstract

A number of variables—word frequency, word length—have long been known to influence 

language processing. We briefly review the effects in speech perception and production of two 

more recently examined variables: phonotactic probability and neighborhood density. We then 

describe a new approach to study language, network science, which is an interdisciplinary field 

drawing from mathematics, computer science, physics, and other disciplines. In this approach, 

nodes represent individual entities in a system (i.e., phonological word-forms in the lexicon), links 

between nodes represent relationships between nodes (i.e., phonological neighbors), and various 

measures enable researchers to assess the micro-level (i.e., the individual word), the macro-level 

(i.e., characteristics about the whole system), and the meso-level (i.e., how an individual fits into 

smaller sub-groups in the larger system). Although research on individual lexical characteristics 

such as word-frequency has increased our understanding of language processing, these measures 

only assess the “micro-level.” Using network science, researchers can examine words at various 

levels in the system, and how each word relates to the many other words stored in the lexicon. 

Several new findings using the network science approach are summarized to illustrate how this 

approach can be used to advance basic research as well as clinical practice.

Several decades ago Cutler (1981) commented on the large number of factors that language 

scientists identified as influences on the production, recognition, or acquisition of spoken 

words. These factors included, among others: semantic ambiguity of a word, number of 

meanings of a word, the length of the word, the stress-pattern of the word, concreteness of 

the word, the age at which the word was first learned (Age of Acquisition; AoA), the 

frequency with which the word occurs in the ambient language (word-frequency), 

morphological complexity of the word, and the recognition point of a word (i.e., the point in 

a word that it becomes unique from all other words in the lexicon). The number of factors 

that researchers have identified as influences on the production, recognition, or acquisition 

of words has only increased since that time, and now includes phonotactic probability and 

neighborhood density, in addition to many others.

Phonotactic probability refers to the frequency with which segments and sequences of 

segments occur in words (Vitevitch & Luce, 2005). A word, like back or a nonword, like /

f∧l/, which contain common segments (/f/, /∧/, /l/) and sequences of segments (/f∧/ and /∧l/) 

that co-occur often in the language, is said to have high phonotactic probability, whereas a 

word, like bag, or a nonword, like /∫∧t∫/, which contain less common segments and 
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sequences of segments that co-occur rarely in the language, is said to have low phonotactic 

probability.

Numerous studies have found that phonotactic probability influences various language 

processes: (1) word segmentation in infants (Mattys, Jusczyk, Luce & Morgan, 1999), (2) 

the production of spoken words in adults (Goldrick & Larson, 2008; Vitevitch, Armbruster 

& Chu, 2004), in children who stutter (Anderson & Byrd, 2008), in typically developing 

children (Zamuner, Gerken & Hammond, 2004), as well as the repetition accuracy in 

speakers with acquired output impairment after stroke (Lallini & Miller, 2011), (3) the 

recognition of words in adults with normal hearing and in adult users of cochlear implants 

(Vitevitch et al., 2002), (4) word learning in typically developing children (Storkel & 

Hoover, 2011), in children with Specific Language Impairment (SLI; Gray, Brinkley & 

Svetina, 2012), in children with phonological delays (Storkel & Hoover, 2010b), in late 

talkers (MacRoy-Higgins, Schwartz, Shafer & Marton, 2013), and in adults (Storkel, 

Armbrüster & Hogan, 2006), and (5) the conjugation of verbs in children with SLI (Leonard, 

Davis & Deevy, 2007).

Phonotactic probability has also been implicated in memory for nonwords (Gathercole, 

Frankish, Pickering & Peaker, 1999; Messer, Leseman, Boom & Mayo, 2010), and in 

literacy-related skills, as in children learning to spell (Apel, Wolter & Masterson, 2006) and 

as evidenced by differences in processing stimuli that vary in phonotactic probability in 

children and adults with dyslexia (Bonte, Poelmans, & Blomert, 2007; Noordenbos et al., 

2013). Finally, both electro- and magneto-physiological components have been identified for 

the processing of stimuli that vary in phonotactic probability (Hunter, 2013; Pylkkänen, 

Stringfellow, & Marantz, 2002).

Neighborhood density refers to the number of words that sound like a target word. A word is 

said to be a phonological neighbor of a target word if the substitution, addition, or deletion 

of a single phoneme in any position in that word converts it to the target word (e.g., 

Greenberg & Jenkins, 1964; Landauer & Streeter, 1973; Luce & Pisoni, 1998). For example, 

the words hat, cut, cap, scat, and _at are considered neighbors of the word cat (cat has other 

words as neighbors, but only a few were listed for illustrative purposes). A word with many 

phonological neighbors is said to have a dense neighborhood, whereas a word with few 

phonological neighbors is said to have a sparse neighborhood.

Numerous studies have found that neighborhood density influences various language 

processes: (1) the acquisition of sounds in children (Gierut, Morrisette & Champion, 1999), 

(2) the acquisition of words in children (Storkel, 2004), and in second language learners 

(Stamer & Vitevitch, 2012; see also computational work in Vitevitch & Storkel, 2013) (3) 

spoken word recognition in young adults with no history of speech, language, or hearing 

impairment in English and in Spanish (Luce & Pisoni, 1998; see also Vitevitch, 2002; 

Vitevitch & Luce 1998; 1999; Vitevitch & Rodriguez, 2005), in older adults with no history 

of speech, language, or hearing impairment (e.g., Sommers, 1996), and in post-lingually 

deafened adults who had a cochlear implant (Kaiser, Kirk, Lachs & Pisoni, 2003), as well as 

the recognition of accented speech (Chan & Vitevitch, in press; Imai, Walley & Flege, 

2005), (4) spoken word production in children who stutter (Arnold, Conture & Ohde, 2005), 
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in young adults with fluent speech in English and in Spanish (Munson & Solomon, 2004; 

Vitevitch, 1997, 2002; Vitevitch & Stamer, 2006), in older adults with fluent speech 

(Vitevitch & Sommers, 2003), in individuals with aphasia (Gordon, 2002), and even (5) 

reading by young adults with no history of speech, language, or hearing impairment (Yates, 

Locker & Simpson, 2004). For a more complete review of how neighborhood density and 

phonotactic probability influence the perception and production of spoken words see 

Vitevitch and Luce (2014).

In working with various colleagues investigating how phonotactic probability and 

neighborhood density influence the production and recognition of spoken words we 

observed several interesting relationships. One observation was that words (or nonwords) 

comprised of common segments and sequences of segments tended to be similar to many 

words in the language. That is, a word or non-word with high phonotactic probability tends 

to have a dense phonological neighborhood. The relationship that we observed between 

phonotactic probability and neighborhood density was easily quantified and captured in the 

statistically significant positive correlation between phonotactic probability and 

neighborhood density (Vitevitch, Luce, Pisoni & Auer, 1999; see Storkel & Lee (2011) for 

an attempt to dissociate the influence of these two variables).

Additional observations that were made, but at the time could not be quantified so easily, 

were that: (1) a phonological neighbor of one word was also a phonological neighbor of 

other words, and (2) some words had phonological neighbors that tended to be neighbors 

just with that specific word, whereas other words had phonological neighbors that were also 

neighbors with other neighbors of that word. With the emergence of the field now known as 

Network Science (Newman, 2010) a suite of mathematical tools that could be used to 

quantify these and other relationships among phonological word-forms in the mental lexicon 

came to our attention. Several studies, briefly summarized in what follows, demonstrate that 

the way in which phonological word-forms are organized in the mental lexicon influences 

lexical processes such as the production, recognition, and acquisition of spoken words.

The focus on the overall structure of the lexicon differs from a more mainstream 

psycholinguistic approach, which tends to focus on characteristics of an individual word—

including phonotactic probability and neighborhood density, as well as many of the variables 

described by Cutler (1981)—for an explanation of why some words are processed 

differently from others. What is most striking about the studies reviewed below is that these 

measures of individual words were controlled in the studies described below, thereby 

providing clear evidence that differences in the structural organization of words in the 

lexicon influence various lexical processes.

What is Network Science?

Network science draws on techniques used in mathematics, sociology, computer science, 

physics and a number of other fields to examine complex systems. What makes complex 

systems interesting to study is that the “whole” is often “greater than the sum of its parts,” 

meaning that the interaction among entities in the system leads to system-wide behaviors 

that cannot be predicted from the local interaction that occurs between two adjacent entities. 
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This holistic approach contrasts with the reductionist approach typically employed in 

contemporary psycholinguistics (and science in general) in which characteristics of 

individual entities—such as how frequent a word occurs in the ambient language—are 

believed to influence processing in the system. Therefore, these network science measures 

may capture important interactions among words that might be useful for understanding 

processing in the mental lexicon and for the development of language interventions.

One way to model a complex system is to use nodes (sometimes called vertices) to represent 

individual entities in the system, and connections to represent relationships between entities 

in the system (the terms edges, directed edges, or arcs are sometime used for connections 

that indicate a relationship in one direction, such as predator-prey relationships). When 

assembled, the nodes and connections of a system form a web-like structure, or network 
(sometimes called a graph), to represent the entire system. As noted above, there are a 

number of disciplines that contribute to Network Science. One discipline tends to use one set 

of terms, whereas another discipline will use the other set of terms to refer to the same 

concepts. In the present case, we will use the terms: node, connection, and network (see 

Appendix-Key Terms for definitions of the terms that we introduce in what follows).

The network approach has been used to examine complex systems in economical, biological, 

social, and technological domains (Barabási, 2009). An intuitive example of network 

analysis and its application is found in the social domain (i.e., a social network) in which 

nodes represent members of a street gang, and connections are placed between gang 

members who participate together in gang-related activities, such as distributing illegal 

drugs. Law enforcement officers employing network analysis techniques could identify 

members of the gang who are the biggest suppliers of drugs to the other gang-members (e.g., 

which node directly connects to the most nodes in the system), and try to turn that gang 

member into a confidential informant, thereby providing law enforcement officers with 

important updates on the use and distribution of drugs. Alternatively, law enforcement 

officers could “remove” that individual from the network by arresting that individual. Such 

an action could maximally disrupt the distribution of illegal drugs by the gang (until another 

gang member steps-in to fill that recently vacated role).

These same analysis techniques can be used to model the species in an eco-system, with 

connections indicating which species prey upon other species (Montoya & Solé, 2002). 

Removal of a node in this case is equivalent to a species going extinct. Determining the 

broader and indirect effects on the ecosystem of one versus another species going extinct 

could provide invaluable information for individuals engaged in conservation efforts to 

decide where to best direct their limited resources.

More relevant to the language sciences, this approach has been used to examine connectivity 

in the brain (Sporns, 2010), and the cognitive processes and representations involved in 

semantic memory (Hills et al., 2009; Steyvers & Tenenbaum, 2005). In the research 

summarized here, we will focus on a network of phonological word-forms in the mental 

lexicon. We will also discuss other ways to use network science to study language, and to 

provide clinical insight.
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Network Science and the Phonological Lexicon

Vitevitch (2008) applied the tools of network science to the mental lexicon by creating a 

network with approximately 20,000 English words represented as nodes1, and connections 

placed between words that were phonologically similar. To operationally define 

“phonologically similar” a commonly used metric was employed (i.e., the one-phoneme 

metric used in Luce & Pisoni, 1998). In the present case two words were connected if the 

addition, deletion or substitution of a phoneme in one word formed the other word. For 

example, the nodes for cat /kæt/ and bat /bæt/ would be connected (the underlined phonemes 

indicate where in the words the changed phoneme occurred). Figure 1 shows a small portion 

of this network.

Analysis of the whole network revealed several noteworthy characteristics about the 

structure of the mental lexicon. (The reader is encouraged to consult the sources cited herein, 

as well as other sources for more technical definitions of the various network measures that 

are described here.) Vitevitch (2008) found that the phonological network had a large group 

of nodes that were highly connected to each other (known as the giant component), as well 

as many smaller groups of words that were connected to each other, but not to the giant 

component. Such items are referred to in the network science literature as smaller 

components, but Vitevitch (2008) adopted the term “lexical islands” to describe such 

groupings in the mental lexicon. An example of a lexical island is the component that 

Vitevitch (2008) referred to as the “island of the shunned,” because words in that component 

contained the sequence of segments /∫^n/, such as faction, fiction, and fission. Vitevitch 

(2008) further observed that the lexical network contained many words that did not have any 

phonological neighbors. An individual node that is not connected to any other nodes is 

known as an isolate in the network science literature, but Vitevitch adopted the term “lexical 

hermits” to describe such words in the mental lexicon.

Vitevitch (2008) further examined the giant component and found that it exhibited small-

world characteristics (Watts & Strogatz, 1998). A network is said to exhibit small-world 

characteristics if it has a “short” average path length (meaning that, on average, one can get 

from one randomly selected node to another randomly selected node in the network by 

traversing a small number of connections), and, relative to what would be expected, a high 

clustering coefficient. The clustering coefficient measures the extent to which the neighbors 

of a given node are also neighbors of each other (see Watts & Strogatz, (1998) for a more 

quantitative definition). Consider the word dog in Figure 1, which has as neighbors the 

words dawn, dug, dig, log, fog, hog, and bog, many of which are also neighbors with each 

other (such as log-fog, hog-bog, etc.). In a small-world network, a node tends to have more 

neighbors being neighbors with each other than would be expected by chance, where 

“chance” is determined by creating a network of similar size but with connections between 

nodes placed randomly rather than based on the relationships that occur in the system being 

examined.

1The words used to make the network came from the Merriam-Webster Pocket Dictionary (1964), which also forms the basis of 
several widely used databases in psycholinguistics (e.g., Storkel & Hoover, 2010a; Vitevitch & Luce, 2004). Although estimates of the 
size of the vocabulary of the average person vary widely, this sample is believed to be sufficiently representative.
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Arbesman, Strogatz and Vitevitch (2010) found similar structural features in phonological 

networks of Spanish, Mandarin, Hawaiian, and Basque. Finding similar network features 

across these languages was somewhat surprising given the numerous differences among the 

languages that were sampled in characteristics like the typical length of a word, the phoneme 

inventories, etc., and the different “families” from which the languages were sampled. For 

example, English is from the Germanic branch of Indo-European languages, whereas 

Spanish is from the Romance branch of Indo-European languages. Mandarin, is not only a 

Sino-Tibetan language, but it further differs from English, Spanish, Hawaiian and Basque in 

that it uses tones to convey word meanings (N.B., tone was not represented in the 

phonological network, however). Hawaiian is an Austronesian language with a phoneme 

inventory that is smaller than the inventories found in English, Spanish, Mandarin, and 

Basque. Finally, Basque is a linguistic isolate, or not known to be related to any other 

language.

Observing the same characteristics in the phonological network of a number of different 

languages suggests that the network of phonological word-forms might be capturing 

important aspects of the structure of the mental lexicon, or of language more generally. One 

of the fundamental assumptions of network science is that the structure of a network 

influences the dynamics of that system (Watts & Strogatz, 1998). That is, a certain process 

might operate very efficiently on a network that is structured in one way. However, in a 

network with the same number of nodes and same number of connections—but with those 

nodes connected in a slightly different way—the same process might now be very 

inefficient. Given the fundamental assumption that the structure of a network influences the 

dynamics of that system, several colleagues and I began to investigate how the structure 

among phonological word-forms in the mental lexicon might influence various language-

related processes.

How lexical structure influences lexical processing

One important measure of network structure is degree, which refers to the number of 

connections that a node has. In the network of phonological word-forms examined by 

Vitevitch (2008) degree corresponds to the more familiar term from psycholinguistics: 

neighborhood density. Thus, a word with a dense neighborhood would be represented in the 

network as a node (or phonological word-form) that is connected to many other nodes/

phonological word-forms (such as the word cat in Figure 1), whereas a word with a sparse 

neighborhood would be represented in the network as a node that is connected to few other 

nodes/phonological word-forms (such as the word dog in Figure 1). Given the extensive 

research on the influence of neighborhood density on a variety of language related processes 

(summarized above) we were encouraged to look for other measures of network structure 

that might also influence language processing in some way.

Our initial exploration began with the clustering coefficient, which measures the proportion 

of phonological neighbors of a word that are also phonological neighbors with each other. 

This network science measure provided us with a way to quantify one of the observations 

noted above: some words had phonological neighbors that tended to be neighbors just with 

that specific word, whereas other words had phonological neighbors that were also 
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neighbors with other neighbors of a word. Thus, the clustering coefficient provided us with a 

long-sought-after way to measure more precisely the “internal structure” of a phonological 

neighborhood.

The clustering coefficient may appear conceptually similar to phonological neighborhood 

density/degree, but it is important to note that they are, by definition, different measures. 

Furthermore, as shown in Chan and Vitevitch (2010), the clustering coefficient of over 6,000 

words in the lexicon (with two or more neighbors, which is the minimum number of 

neighbors required to compute clustering coefficient) was not significantly correlated with 

the neighborhood density/degree of those words (see also Vitevitch, Chan & Roodenrys, 

2012).

Chan and Vitevitch (2009) found that words that were similar in neighborhood density/

degree, but varied in clustering coefficient were responded to differentially in several 

conventional psycholinguistic tasks. That is, words with low clustering coefficient (the 

neighbors of a target word tended to be neighbors only with the target word, and not with 

other neighbors) were responded to in a perceptual identification task and a lexical decision 

task more quickly and accurately than words with high clustering coefficient (many of the 

neighbors of a target word were also neighbors with each other).

Furthermore, Chan and Vitevitch (2009) found that computer simulations of widely-

accepted models of spoken word recognition were not able to account for the influence of 

clustering coefficient on spoken word recognition, suggesting that the structure of the 

lexicon, as measured by the clustering coefficient, may influence spoken word recognition. 

Although widely-accepted models of spoken word recognition were not able to account for 

the influence of clustering coefficient on spoken word recognition, Vitevitch, Ercal and 

Adagarla (2011) demonstrated with computer simulations that the diffusion of activation 

across a network model could account for the influence of clustering coefficient on spoken 

word recognition. Subsequent research has found that the clustering coefficient also 

influences the production of spoken words (Chan & Vitevitch, 2010), certain aspects of 

short-term- and long-term-memory for words (Vitevitch, Chan & Roodenrys, 2012), and the 

acquisition of novel word-forms (Vitevitch & Goldstein, submitted).

Additional studies have examined how other structures observed in the lexical network—

including path-length, mixing pattern, the existence of communities, and keyplayers in the 

network—might influence language-related processes. Path-length refers to the number of 

connections that must be traversed to get from one node/word to another. For example, in the 

network in Figure 1, the path-length between dog and bog is 1 connection, whereas the 

(shortest) path between the words dog and cat is 4. Vitevitch, Goldstein and Johnson 

(submitted) analyzed responses in a phonological associates task (the participant hears a 

word and says the first word that comes to mind that “sounds like” that word) to examine 

how path length might influence what is perceived when a word is perceived erroneously.

Although participants were not given a precise definition of what it means for two words to 

“sound like” each other, Vitevitch et al. found that over 80% of the responses differed from 

the target word by a single phoneme. For example, if the participant heard the word dog, 
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they were likely to respond with bog or dig. More interesting, over 95% of the responses that 

differed from the target word by more than a single phoneme had a path that connected the 

target word to the more distant response, such as being presented with dog and responding 

with bag (see Figure 1). The existence of lexical intermediaries between the target word and 

more distant responses raises some concerns about measures of word-form similarity that 

ignore such items, such as the Orthographic Levenshtein Distance-20 (OLD-20; Yarkoni, 

Balota & Yap, 2008), and the Phonological Levenshtein Distance-20 (PLD-20; Suárez, Tan, 

Yap & Goh, 2011). Computations of OLD-20/PLD-20 do not consider whether real-word 

intermediaries exist or not; the measure only considers the number of letter/phoneme 

changes (respectively) that are required to turn one word into another. However, the findings 

of Vitevitch et al. show that distant phonological neighbors tend to be connected to a word 

via a path of real words, raising questions about the psychological validity of metrics such as 

OLD-20 and PLD-20 that do not take into account the existence of lexical intermediaries.

The mixing pattern of a network refers to a general tendency for how nodes in a network 

connect to each other (i.e., how entities in the system tend to mix together). In a social 

network, mixing might be defined based on the age of the individuals, resulting in the 

observation that people in the network tend to have as friends people that are comparable in 

age.

Mixing, however, can be defined on a variety of other characteristics, including the number 

of connections that a node has (i.e., degree). If nodes with many connections tend to connect 

to other nodes that also have many connections—there is an overall positive correlation in 

the degree of two connected nodes—it is said that the network exhibits assortative mixing by 

degree. If nodes with many connections tend to connect to other nodes that have few 

connections—there is an overall negative correlation in the degree of two connected nodes—

it is said that the network exhibits disassortative mixing by degree. If there is no correlation 

in the degree of two connected nodes, then there is no observable mixing pattern.

In their analysis of the network structure of several different languages, Arbesman, et al. 

(2010) found relatively high values of assortative mixing by degree (.5–.8 in the languages 

examined by Arbesman et al., whereas .1–.3 is typically observed in social networks). The 

observation of assortative mixing by degree in phonological networks is interesting because 

mathematical simulations of networks with different mixing patterns suggest that the overall 

pattern of mixing exhibited in a network has implications for the ability of the system to 

maintain processing in the face of damage to the network. Newman (2002) found that 

removing nodes with high-degree in networks with disassortative mixing by degree greatly 

disrupted the ability to traverse a path from one node to another node in the system (known 

as network connectivity). In contrast, network connectivity was not disrupted as much when 

high-degree nodes were removed from a network with assortative mixing by degree. In other 

words, networks with assortative mixing by degree are able to remain relatively connected in 

the face of targeted attacks to the system.

In addition to measuring the extent to which the phonological networks exhibited assortative 

mixing by degree, Arbesman et al. (2010) used the method employed by Newman (2002) to 

examine the resilience of the English network by targeting for removal either highly 
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connected nodes, or randomly selected nodes for removal. What is typically observed in 

other domains is that the network remains relatively well connected when nodes are attacked 

at random, but when highly connected nodes are targeted for removal the network falls apart, 

thereby disrupting processing in that system (e.g., Albert, Jeong & Barabási, 2000; Newman, 

2002). In contrast, Arbesman et al. observed similar and high levels of resilience in 

connectivity in the phonological network when either a random attack or an attack targeting 

highly connected nodes was carried out. The resilience of phonological networks with 

assortative mixing by degree observed in the computer simulations of Arbesman et al (2010) 

made us wonder how network organization might contribute to the “resilience” of language 

processing more broadly.

Vitevitch, Chan and Goldstein (2014) reasoned that if assortative mixing by degree 

contributes to the “resilience” of language processing, then they should be able to find 

behavioural evidence for assortative mixing by degree in instances when lexical retrieval 

failed. Recall that in the phonological network degree corresponds to the psycholinguistic 

term, phonological neighborhood density. Therefore, when lexical retrieval fails the 

neighborhood density/degree of the word that is erroneously retrieved should be correlated 

to the neighborhood density/degree of the word that was correctly produced. Vitevitch et al. 

analyzed a corpus of slips-of-the-ear, or speech errors in which the speaker produces an 

utterance correctly, but the listener “mishears” what is said. They found a significant, 

positive correlation in the neighborhood density/degree of the words that were produced and 

the neighborhood density/degree of the words that were “misheard” by the listener, 

indicating that assortative mixing by degree might have behavioural consequences for 

certain aspects of language processing.

To further examine how assortative mixing by degree might influence language processing, 

Vitevitch et al. (2014) simulated “failed” lexical retrieval in a computer model of spoken 

word recognition, and also in three psycholinguistics tasks that approximated, in a 

laboratory setting, failed lexical retrieval. Vitevitch et al. again found behavioural evidence 

for assortative mixing by degree; that is, a significant, positive correlation in the 

neighborhood density/degree of the words that were presented to participants and the 

neighborhood density/degree of the words that were given in response. The results of these 

studies on the network science metric known as assortative mixing by degree further suggest 

that the way word-forms are organized in the mental lexicon influences certain aspects of 

language processing.

Together these studies illustrate that network science consists of techniques and 

measurements that can be used to examine a system at multiple levels. At the micro-level, 
one can examine the characteristics of an individual node in the system, and perhaps the 

nodes immediately connected to that individual in the system. Thus, the studies that 

examined the influence of degree and clustering coefficient on lexical processing can be 

categorized as having examined the influence of the micro-structure of the lexicon on 

processing. At the macro-level, one examines the characteristics of the whole system by 

calculating the average value of a particular measure, or by measuring a characteristic that 

describes a general tendency in the system. Thus, the studies that examined the influence of 

mixing (i.e., assortative mixing by degree) and path length on lexical processing can be 
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categorized as having examined the influence of the macro-structure of the lexicon on 

processing.

In between the micro- and macro-levels lies the meso-level, where one can examine 

characteristics of groups or sub-sets of nodes that might be found in the system. A common 

technique used to examine the meso-level is community detection, or attempting to find 

smaller sub-groups of nodes, called communities. Nodes within a given community tend to 

be more connected to each other than to nodes found in another community. Consider the 

neighbors of the word cat in Figure 1: cot, cut, coat, kit and kite might form one community, 

cad, calf, cab and can might form another community, and chat, that, hat, rat, gnat and fat 
might form yet another community.

Using a common community detection algorithm, Siew (2013) found 17 communities of 

various sizes in the phonological network examined in Vitevitch (2008). Siew suggested that 

the presence of community structure in the lexical network might contribute to the rapidity 

of word recognition by restricting activation to a relatively small sub-set of lexical 

candidates (i.e., the words in the community) instead of allowing activation to spread 

rampantly to the entire lexicon.

Implications of Network Science for Speech and Language Disorders

The studies reviewed above looked at a variety of network measures and their influence on 

lexical processing in typically developing college-age adults. Despite the—at present—

limited application of network science to the language sciences (for reviews see: Baronchelli 

et al., 2013, and Cong & Liu, 2014), we believe there is much promise for the application of 

network science, especially for increasing our understanding of language development, and 

our understanding of and ability to treat language disorders.

One network measure that might have fairly direct application to clinical practice is that of 

keyplayers in the network. Keyplayers are nodes in a network that, when removed, result in 

the network fracturing into several smaller components (see Borgatti (2006) for the 

algorithm used to find such nodes, as well as for information about software that will find 

such nodes in a network). In Figure 1, if the word bag (and its connections) were removed 

from the network, two smaller components would be obtained: dog and its neighbors, and 

cat and its neighbors, with no way to get from dog to cat. Vitevitch and Goldstein (2014) 

extracted a set of 25 words that held such “key” positions in the larger phonological network 

(e.g., bring, fish, misty), and a set of 25 foil words (e.g., brief, firm, mystic) that were 

comparable to the “keywords” on a number of lexical and network characteristics. They 

found that keywords were responded to more quickly and accurately than the foils in a 

perceptual identification task, an auditory naming task, and an auditory lexical decision task, 

showing that the position of words in the phonological network plays an important role in 

the processing of those words.

Given the important role that “keywords” in the network play in processing, one might 

attempt to introduce keywords at a developmentally appropriate time during the acquisition 

of a first or second language to accelerate or otherwise facilitate the acquisition of new 
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words. Similarly in individuals with acquired language disorders, including various types of 

aphasia, treatments that focus on the re-acquisition or rehabilitation of such keywords could 

facilitate language recovery. Additional analyses, simulations, and empirical investigations 

are required, however, to verify what is at present optimistic speculation.

Work by Beckage, Smith, and Hills (2011) illustrates more directly how the principles and 

analytic techniques of network science can be used to increase our understanding of certain 

language disorders. Note that their analysis was of a lexical network in which the 

connections between words represented semantic similarity, instead of phonological 

similarity as in most of the studies described here. In their analysis, Beckage et al. (2011) 

made semantic networks for a group of typically developing children and for a group of “late 

talking” children, who had vocabularies (obtained from the Communicative Development 

Inventories (CDI), Dale & Fenson, 1996) that were smaller than most children at that age 

(15 to 36 months).

Beckage et al. (2011) observed that the networks for the typically developing children had a 

higher clustering coefficient, a shorter path-length, and greater average degree compared to 

the networks for the late-talking children (specifically for directed links coming “into” the 

node, known as in-degree; see Appendix-Key Terms for a definition of in-degree). In other 

words, the extent to which a child’s vocabulary resembled a small-world network was 

related to the child’s rate of vocabulary development, such that children who developed a 

vocabulary at the typical pace exhibited networks with small-world characteristics, whereas 

late-talkers showed the small-world characteristics to a lesser extent. The small-world 

network structure is known to contribute to rapid search (Kleinberg, 2000). It is perhaps not 

a coincidence that deviations from this network structure were observed in the lexical 

network of late-talking individuals.

Beckage et al. (2011) suggested that the small-world-like structure observed in the semantic 

lexicon of typically developing children likely arises from the biases in word acquisition 

identified (via network analyses) in Hills et al. (2009; 2010). However, late-talking children 

may instead show a preference for new words that are semantically novel compared to what 

is already known; they refer to such words as “oddballs.”’ For example, late-talking children 

may be more likely to acquire the word telephone than dog after learning the word cat, 
because telephone is less semantically similar to the already known word cat.2

The work by Beckage and colleagues and by Hills and colleagues on the acquisition of 

semantic information in the mental lexicon nicely illustrates how network analyses can be 

useful for shedding light on the processes that influence typical, disordered, and delayed 

development (see also Kenett et al., 2013). In what follows we show how network analyses 

might also be useful for examining language processes at the other end of the developmental 

spectrum, namely in adults with either Broca’s or Wernicke’s aphasia.

2Interestingly, such an “oddball” strategy may be advantageous for triggering the acquisition of novel phonological word-forms in 
typically developing individuals (Storkel, 2011). That is, novel words that are phonologically less similar to other known words can be 
more easily identified as a novel word to which resources should be allocated in order to acquire it. Novel words that are 
phonologically similar to many known words may be erroneously identified as an already known word, thereby delaying the 
acquisition of that novel word (in typically developing individuals).
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Analysis of performance in the Philadelphia Naming Test

In this section we report the results of an analysis of data obtained from a database (freely 

available on-line) of various tests of cognitive function performed by individuals with 

various types of aphasia and by age-matched controls (Mirman et al., 2010). We examined 

some well-known linguistic variables in this analysis in order to replicate the results of 

previous studies of speech production. The replication of previous well-known results in this 

set of data would bolster our confidence in any novel results we might obtain as we explore 

how other network science measures that we have not examined previously might influence 

speech production.

We downloaded from the Moss Aphasia Psycholinguistics Project Database (accessed 

March, 2014) the accuracy results of the 175 items in the Philadelphia Naming Test (PNT) 

for age-matched controls (n = 20), individuals with Broca’s Aphasia (n = 58) and individuals 

with Wernicke’s Aphasia (n = 36). A binomial multiple regression model was used to predict 

the odds of naming a picture correctly. Table 1 lists each variable that we examined, the beta 

coefficient (in log odds units), and the coefficient in odds units (calculated by taking the 

exponent of the beta coefficient). All analyses discussed below were significant at p < .001, 

indicating that a particular variable influences the likelihood of accurately naming a picture 

when all other variables are controlled.

Not surprising, the odds of accurately naming a picture in the PNT was influenced by the 

type of individual (i.e., Wernicke’s Aphasia, Broca’s Aphasia, or age-matched control). The 

odds of correctly naming a picture for those with Wernicke’s aphasia was 0.015 times the 

odds for healthy controls, and the odds of correctly naming a picture for those with Broca’s 

aphasia was 0.024 times the odds for healthy controls. In other words, healthy controls 

named roughly 67 pictures correctly for every 1 picture named correctly by an individual 

with Wernicke’s aphasia, and healthy controls named roughly 42 pictures correctly for every 

1 picture named correctly by an individual with Broca’s aphasia.

It is also not surprising that over time as individuals recover from the incident that led to 

either Wernicke’s or Broca’s Aphasia, that performance on cognitive tasks, like the PNT, 

improve (at least somewhat). In the present analysis we found that for every month post-

onset, the odds of correctly naming a picture was 1.003, or an increase in accuracy of 0.3% 

each month.

It has long been known that the length of a word (measured in various ways, including the 

number of syllables in the word, the number of letters in the word, or the number of 

phonemes in the word) influences the likelihood of accurately producing a word (e.g., 

Meyer, Roelofs & Levelt, 2003; Hodgson & Ellis, 1998; Santiago, MacKay, Palma & Rho, 

2000). For example, Bricker, Schuell and Jenkins (1964) found that individuals with aphasia 

(type was not specified) made more errors spelling longer words than shorter words. In the 

present analysis we found that as the length of the word (measured by the number of 

phonemes) increased, the odds of correctly naming a picture was 0.823, or a decrease in 

accuracy of roughly 18%, replicating the well-attested influence of word-length on speech 

production.
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It is also well-known that the frequency with which a word occurs in the language influences 

how quickly and accurately it is perceived or produced (e.g., Howes, 1957). Specifically, 

words that are common in the language tend to be produced and perceived more quickly and 

accurately than words that are used less often. In our analysis of data from the PNT, we 

found that as the frequency of the word increases, the odds of correctly naming a picture was 

1.368, or an increase of roughly 37%, replicating another well-attested influence on speech 

production.

Another effect that was replicated in the present set of data was the influence of 

neighborhood density on speech production (e.g., Goldrick & Rapp, 2007; Harley & Bown, 

1998; Vitevitch, 1997, 2002; Vitevitch & Sommers, 2003). Recall that neighborhood density 

refers to the number of words that sound like a target word. In a network representation of 

phonological word-forms in the lexicon, the term degree refers to the number of connections 

incident to a node; in other words, how many words sound similar to that word. Because the 

psycholinguistic term neighborhood density and the network science term degree both refer 

to the same concept we will use the combined term degree/neighborhood density. As in 

previous studies of speech production we found in the present set of data that as the degree/

neighborhood density of a word increased, the odds of correctly naming a picture was 1.548, 

or an increase of roughly 55%.

Replicating several well-known and previously observed effects in the present set of data 

bolsters our confidence that any new effects of network variables that have not been 

extensively explored in psycholinguistics that we may presently observe are not spurious. 

One network variable we wish to explore in the present data is closeness centrality, which 

measures the distance from one node to all other nodes in the network (following the 

shortest path between any two nodes being considered). A node might therefore be 

considered “important” if it is relatively close to all other nodes in the system. More 

precisely, closeness centrality is defined as:

(Eq. 1)

d(v, u) refers to the shortest distance (i.e., shortest path) between nodes v and u, Σ refers to 

the sum of the path lengths from node v to all other nodes in the network.

As indicated in Equation 1, closeness centrality is typically reported as the inverse of the 

distance from a node to every other node in the network. Therefore, a node that has high 

closeness centrality, a value close to 1, tends to be close to the other nodes in the network 

(meaning that one can get from that node to other nodes in the network by traversing 

relatively few connections). Conversely, a node that has low closeness centrality, a value 

close to 0, tends to be far away from the other nodes in the network (meaning that one must 

traverse many connections to get from that node to the other nodes in the network).

Iyengar et al. (2012) demonstrated the influence of closeness centrality on language-related 

processing using a game called word-morph, in which participants were given a word, and 
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asked to form a disparate word by changing one letter at a time. For example, asked to 

“morph” the word bay into the word egg participants might have changed bay into bad-bid-
aid-add-ado-ago-ego and finally into egg. (See Figure 1 for a way to morph the word dog 
into the word cat.) Once participants in this task identified certain “landmark” words in the 

network of orthographically similar words—words that had high closeness centrality, like 

the word aid in the example above—the task of navigating from one word to another became 

trivial, enabling the participants to solve subsequent word-morph puzzles very quickly. The 

time it took to find a solution dropped from 10–18 minutes in the first 10 games, to about 2 

minutes after playing 15 games, to about 30 seconds after playing 28 games, because 

participants would “morph” the start-word (e.g., bay) into one of the landmark words that 

were high in closeness centrality (e.g., aid), then morph the landmark-word into the desired 

end-word (e.g., egg). Although this task is a contrived word-game rather than a conventional 

psycholinguistic task that assesses on-line lexical processing, the results of Iyengar et al. 

(2012) nevertheless illustrate how the tools of network science can be used to provide 

insights about linguistic representations and how the organization of those representations 

might influence processing.

In the present analysis of picture naming data from the PNT we observed that as closeness 

centrality increased, the odds of correctly naming a picture was 0.006. That is, words that 

are close to all of the other words in the lexicon are named less accurately than words that 

are far away from all of the other words in the lexicon. Although this result may appear to 

contradict the findings reported by Iyengar et al. (2012), that is not the case. Recall that 

Iyengar et al. found that words with high closeness centrality proved to be very useful in the 

word-morph game. The demands of this off-line, language game are quite different from the 

demands of a confrontation naming-task (a.k.a., picture- or object-naming), such as that 

found in the PNT. In the word-morph game, being close to other words in the lexicon can 

help one quickly transform one word into another, leading to successful performance in the 

game. However, when the task is to retrieve from the lexicon a specific word, as in a picture-

naming task, being close to all of the other words in the lexicon could lead to competition 

among candidate word-forms, or to activation being diverted away from the target word-

form to all of the other nearby word-forms, thereby decreasing the likelihood of successfully 

retrieving target words that have high closeness centrality. Given the different demands of 

the word-morph game and the picture-naming task, the present results do not necessarily 

contradict the findings from Iyengar et al. (2012).

The present findings regarding closeness centrality may also appear to contradict the well-

attested findings regarding degree/neighborhood density that were replicated in the present 

analysis: English words with many phonological neighbors are named more accurately than 

English words with few phonological neighbors (e.g., Goldrick & Rapp, 2007; Harley & 

Bown, 1998; Vitevitch, 1997, 2002; Vitevitch & Sommers, 2003). Computer simulations 

(e.g., Dell & Gordon, 2003; Gordon & Dell, 2001) further demonstrated that “phonological 

neighbors,” or words that differed from the target word by one phoneme, played a 

facilitative role in retrieving a word-form from the lexicon, such that words with more 

neighbors were retrieved more accurately than words with few neighbors.
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However, recent simulations looking at what might be described as “distant neighbors” 

suggests that items that are less similar to a target word can exert a different influence on 

lexical retrieval than “near” neighbors (Mirman & Magnuson, 2008). Therefore, it is not 

unreasonable for degree/neighborhood density, which measures “near” neighbors, to exert 

one type of influence on lexical retrieval, and closeness centrality, which measures “distant” 

neighbors, to exert a different kind of influence on lexical retrieval.

The replication of several well-studied effects in the present analysis boosts our confidence 

regarding the novel influence observed for closeness centrality on speech production. The 

work of Iyengar et al. (2012) as well as the present findings regarding closeness centrality 

point to a network characteristic that may warrant further investigation by language 

scientists and speech-language pathologists.

Another network variable that may warrant further investigation by language scientists is 

where in the network a word resides. Recall that Vitevitch (2008) found that the 

phonological network of English had a large group of nodes that were highly connected to 

each other (i.e., the giant component), as well as many smaller groups of words that were 

connected to each other, but not to the giant component (i.e., smaller components, or “lexical 

islands”), and many words that did not have any phonological neighbors at all (i.e., isolates, 

“lexical hermits”). Further recall that Arbesman, Strogatz & Vitevitch (2010) found across a 

handful of languages that the giant component contained from 34% (English) to 66% 

(Mandarin) of the words in the lexicon, leaving a large proportion of words in either the 

lexical islands, or as hermits. In most systems examined in network science about 90% of 

the nodes are found in the giant component. The smaller proportion of nodes found in the 

giant component in phonological networks compared to other types of networks points to a 

characteristic that may warrant further investigation.

In the present analysis we examined whether a word located in the giant component (coded 

as 0 in the present analysis) might be processed differently than a word found outside of the 

giant component (coded as 1 in the present analysis; we did not distinguish between words 

in smaller components and isolates in this analysis). In the picture naming data from the 

PNT we observed that the odds of correctly naming a picture was 2.05 times greater for 

words not in the giant component. That is, words found outside of the giant component were 

named more accurately than words in the giant component (see also Siew & Vitevitch, 

2014).

The present finding regarding more accurate naming of words found outside of the giant 

component is intriguing, because Siew (2013) observed that giant component words tend to 

be short, monosyllabic words, whereas lexical island words tend to be long, multisyllabic 

words. Given the well-known relationship between word frequency and word length—

commonly used words tend to be short words and less commonly used words tend to be 

longer words (Zipf, 1935)—and the well-known influences of word frequency and of word-

length on lexical retrieval (described above and replicated in this set of data), one might 

expect the words in the giant component to be named more accurately than words outside of 

the giant component. Recall, however, that in the binomial multiple regression technique 

used in the present analysis all other variables are controlled. Finding an influence of 

Vitevitch and Castro Page 15

Int J Speech Lang Pathol. Author manuscript; available in PMC 2017 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



location in the phonological network when those other variables (e.g., word length, word 

frequency) are controlled points to another network characteristic that may warrant further 

investigation by language scientists (see Siew & Vitevitch, 2014 for a possible account of 

this finding).

Conclusion

In the present review we briefly summarized a large body of research looking at individual 

lexical characteristics, focusing specifically on phonotactic probability and neighborhood 
density. We proceeded to introduce the emerging field of network science, and illustrated 

how the computational tools of network science could be used to examine individual lexical 

characteristics (i.e., the micro-level), overall characteristics of a system (i.e., the macro-
level), as well as characteristics of subsets of items (i.e., the meso-level) in the context of the 

phonological lexicon. The results of the studies that we summarized showed that more than 

just individual lexical characteristics influence processing. Rather, the structure of the 

lexicon at the micro-, meso-, and macro-level influence various aspects of lexical 

processing.

Furthermore, we analyzed data from an on-line database of the Philadelphia Naming Test to 

show the utility of network science for increasing our understanding of language processing 

at other points in the lifespan. A number of well-known findings were replicated, and several 

novel influences of network science measures on lexical processing were also observed, 

pointing toward new avenues for research. Without explicitly appealing to the overall 

structure of the lexicon—something that previous models of lexical processing have not 

done—it is difficult to see how current models of lexical retrieval could account for the 

novel findings that we observed.

The present manuscript focused primarily on phonological networks. By no means, however, 

is phonology the only aspect of the mental lexicon or of language more broadly that can be 

examined using network science; a bibliography of research using networks to study 

semantics, orthography, and may other aspects of language can be found at: http://

www.lsi.upc.edu/~rferrericancho/linguistic_and_cognitive_networks.html.

A developing area of research in network science is on multiplex networks, in which two or 

more relationships between entities are represented in the network. In the case of a multiplex 

network of people links between people might represent different relationships, such as 

friendship ties, advice seeking/giving, and people to whom you would loan $100. This 

developing area of research holds much promise for the study of language to examine how 

semantic, phonological, and orthographic factors contribute to and interact during language 

processing (see Mirman & Magnuson (2008) for a different approach to representing 

semantic and phonological information).

Although we are enthusiastic about the potential insights that network science can provide 

the language sciences, we recognize that networks are not suitable for all research questions. 

Researchers and clinicians who desire to use the theoretical framework and analytic tools of 

network science should think carefully about how well entities and relationships among 
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those entities in a given domain map onto nodes and connections in a network representation 

(Butts, 2009; Valente, 2012). Similarly, not all measures employed in network science are 

appropriate for all domains (Borgatti, 2005). We urge more language scientists to consider 

how network science might lead to new questions and novel insights, but we also urge 

judicious and appropriate use of these techniques. See the appendix for information on 

software that can be used to visualize a network and to compute the variables that are 

discussed.
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Appendix. Key Terms

Assortative Mixing by Degree: nodes with many connections tend to connect to other nodes 

that also have many connections. This is seen as an overall positive correlation in the degree 

of two connected nodes. Mixing patterns are generally viewed as a macro-level metric of a 

network. See mixing pattern, macro-level and Degree.

Average Path Length: the number of nodes that have to be traversed, on average, to get from 

one randomly selected node to another randomly selected node in the network. This can be 

considered a macro-level metric of a network.

Clustering Coefficient: the extent to which the neighbors of a given node are also neighbors 

of each other. It is determined by the ratio of the actual number of links that exist among the 

neighbors of a given node to the number of all possible links that could exist among the 

neighbors if every neighbor was connected. Values range from 0 (none of the neighbors of a 

target word are connected) to 1 (every neighbor of a target word is connected to every other 

neighbor). This can be considered a micro-level metric of a node, or, if the average 

clustering coefficient of all of the nodes in the network is calculated it would be a macro-

level metric.

Closeness Centrality: measures the distance from one node to all other nodes in the network 

while following the shortest path between any two nodes being considered. A value close to 

0 indicates that a node tends to be far away from other nodes in the network, whereas a value 

close to 1 indicates that a node tends to be close to other nodes in the network. This can be 

considered a micro-level metric of a node..

Community Detection: the attempt to find smaller sub-groups of nodes, called communities, 

within a larger network. Nodes within a given community tend to be more connected to each 

other than to nodes found in another community. There are a number of algorithms that can 

be used to detect communities, but a common one is the Louvian method (which Siew 

(2013) used to examine the phonological network). Communities of nodes are considered a 

meso-level metric.

Degree: the number of connections incident to a node. In the phonological network 

examined by Vitevitch (2008), a connection was placed between nodes if the words differed 
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by one phoneme (via addition, substitution, or deletion) making degree in the phonological 

network synonymous with the psycholinguistic term phonological neighborhood density. 

Databases and calculators for neighborhood density can be found on-line (e.g., Storkel and 

Hoover, 2010a). Because degree is a characteristic of an individual node, it can be thought of 

as a metric of the micro-level structure of the network. See In-degree and out-degree.

Disassortative Mixing by Degree: nodes with many connections tend to connect to other 

nodes that have few connections. This is seen as an overall negative correlation in the degree 

of two connected nodes. See mixing pattern and Degree

Giant Component: the largest group of interconnected nodes in a network. In the 

phonological network examined by Vitevitch (2008), the giant component contained 6,508 

nodes of the 19,340 nodes used to create the network. As discussed in Arbesman, Strogatz 

and Vitevitch (2010) the percentage of the network found in the giant component of the 

phonological network of various languages is smaller than the percentage of the network 

found in the giant component in other domains (e.g., social, technological, or biological 

networks).

In-degree and out-degree: In an undirected network, the connections between nodes indicate 

a bidirectional relationship (e.g., I am friends with you, you are friends with me). In a 

directed network, the connections between nodes indicate a uni-directional relationship 

between nodes (e.g., I ask you for advice, but you do not ask me for advice). Therefore, in 

directed networks two measures of degree are often reported: (1) the number of directed 

connections pointing into a given node (in-degree) and (2) the number of directed 

connections pointing from a given node to other nodes in the network (out-degree).

Keyplayers: nodes in a network that, when removed, result in the network fracturing into 

several smaller components.

Lexical Island: the term used in the phonological network of Vitevitch (2008) to refer to a 

small group of words that were connected to each other, but not to the giant component. For 

example, one island contained the words converse, convert, and converge. In network 

science, these distinct, smaller groups are referred to simply as components (to distinguish 

them from the giant component).

Lexical Hermit: the term used in the phonological network of Vitevitch (2008) to refer to a 

word that did not have a phonological neighbor. That is, it was not connected to any other 

node. For example, the word spinach has no phonological neighbors. In network science, a 

node that is not connected to any other node is referred to as an isolate.

Micro-level: characteristics of an individual node (in this case, a word), and perhaps the 

nodes immediately connected to that individual in the system.

Meso-level: characteristics of groups or sub-sets of nodes found in the system.

Macro-level: characteristics of the whole system. These can be obtained by calculating the 

mean value of a particular (micro-level) measure, or by measuring a characteristic that 

describes a general tendency in the system (such as the mixing pattern).
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Mixing Pattern: a general tendency for how nodes in a network connect to each other. This is 

considered a macro-level metric.

Network analysis and visualization software: There are a number of computer programs 

(available for free or for a fee) that can be used to calculate the various measures described 

here (as well as additional measures not described here), and to create images like that in 

Figure 1. Two common programs are Pajek (Batagelj & Mrvar, 1988), and Gephi (Bastian, 

Heymann, & Jacomy, 2009).
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Figure 1. 
A small portion of the network examined in Vitevitch (2008). Each word is, of course, 

connected to other words in the lexicon, but only a few words are displayed here for the sake 

of image clarity. See additional discussion in the text for illustrations of certain network 

science concepts.
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Table 1

Analysis of performance in the Philadelphia Naming Test

Variable Beta Coefficient
(log odds unit)

Coefficient
(odds unit)

Intercept 4.382 79.99

Wernicke’s Aphasia −4.183 0.015

Broca’s Aphasia −3.727 0.024

Months Post Onset 0.003 1.003

Word length −0.195 0.823

Word Frequency 0.313 1.368

Degree/neighborhood density 0.437 1.548

Closeness Centrality −5.144 0.006

Component 0.720 2.054

Notes: Wernicke’s Aphasia is in comparison to age-matched controls. Broca’s Aphasia is in comparison to age-matched controls. Word length was 
centered at 1 phoneme. Word frequency counts came from Kučera & Francis (1967; we added 1 to each value and then performed a log10 
transformation). For degree/neighborhood density, we added 1 to each value, and performed a log10 transformation, because as observed in 

Vitevitch (2008) degree/neighborhood density is not normally distributed. For the Component, words in the giant component were coded as 0, 
words outside of the giant component were coded as 1.
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