4,663 research outputs found
Wear rates in urban rail systems
A significant part of maintenance costs in urban rail systems (metro, tram, light rapid transit/light metro) is due to wheel-rail wear. Wear rates - measured for example as depth of wear per kilometre run (rolling stock) or per train passage (rails) - depend in a complex manner on several influence factors. Among
the most important are key design factors of the rolling stock (wheel profiles, suspension characteristics), of the track (distribution of curve radii, characteristics of switches and crossings, rail profiles), of the wheel-rail interface (lubrication, materials in contact, ambient characteristics), and of
operations (frequency of traction and braking, trainset inversion policy, maintenance policy etc.). When designing an urban rail system, all of these factors have to be under control in order to limit the costs due to wheel/rail reprofiling/grinding and replacement. The state of the art allows the calculation of
wear rates given quantitative input regarding the above factors. However, it is difficult to find in the literature experimental values for calibration of wear models and indications on what is a reasonable state-of-the-art wear rate for any given type of urban rail system. In this paper we present a structured
analysis of flange wear rates found in the literature and derived from the experience of the authors, for a variety of cases, including metros and mainline rail systems. We compare the wear rates and explain their relationship with the influence factors. We then relate the wear rates with the needs in terms of
wheel reprofiling/replacement. We estimate ranges for the calibration coefficients of wear models. We present the results in a way as to allow the designer of urban rail systems to derive values for target wear rates according to their specific conditions without the need for complex simulations
Increasing future gravitational-wave detectors sensitivity by means of amplitude filter cavities and quantum entanglement
The future laser interferometric gravitational-wave detectors sensitivity can
be improved using squeezed light. In particular, recently a scheme which uses
the optical field with frequency dependent squeeze factor, prepared by means of
a relatively short (~30 m) amplitude filter cavity, was proposed
\cite{Corbitt2004-3}. Here we consider an improved version of this scheme,
which allows to further reduce the quantum noise by exploiting the quantum
entanglement between the optical fields at the filter cavity two ports.Comment: 10 pages, 7 figure
Reversible optical to microwave quantum interface
We describe a reversible quantum interface between an optical and a microwave
field using a hybrid device based on their common interaction with a
micro-mechanical resonator in a superconducting circuit. We show that, by
employing state-of-the-art opto-electro-mechanical devices, one can realise an
effective source of (bright) two-mode squeezing with an optical idler (signal)
and a microwave signal, which can be used for high-fidelity transfer of quantum
states between optical and microwave fields by means of continuous variable
teleportation.Comment: 5 + 3 pages, 5 figure
Kondo effect of Co adatoms on Ag monolayers on noble metal surfaces
The Kondo temperature of single Co adatoms on monolayers of Ag on Cu
and Au(111) is determined using Scanning Tunneling Spectroscopy. of Co on
a single monolayer of Ag on either substrate is essentially the same as that of
Co on a homogenous Ag(111) crystal. This gives strong evidence that the
interaction of surface Kondo impurities with the substrate is very local in
nature. By comparing found for Co on Cu, Ag, and Au (111)-surfaces we
show that the energy scale of the many-electron Kondo state is insensitive to
the properties of surface states and to the energetic position of the projected
bulk band edges.Comment: 4 pages, 3 figure
Implementation of the Linear Method for the optimization of Jastrow-Feenberg and Backflow Correlations
We present a fully detailed and highly performing implementation of the
Linear Method [J. Toulouse and C. J. Umrigar (2007)] to optimize
Jastrow-Feenberg and Backflow Correlations in many-body wave-functions, which
are widely used in condensed matter physics. We show that it is possible to
implement such optimization scheme performing analytical derivatives of the
wave-function with respect to the variational parameters achieving the best
possible complexity O(N^3) in the number of particles N.Comment: submitted to the Comp. Phys. Com
Recommended from our members
Seasonal persistence of midlatitude total ozone anomalies
Temporal autocorrelations of monthly mean total ozone anomalies over the 35–60°S and 35–60°N latitude bands reveal that anomalies established in the wintertime midlatitude ozone buildup persist (with photochemical decay) until the end of the following autumn, and then are rapidly erased once the next winter's buildup begins. The photochemical decay rate is found to be identical between the two hemispheres. High predictability of ozone through late summer exists based on the late-spring values. In the northern hemisphere, extending the 1979–2001 springtime ozone trend to other months through regression based on the seasonal persistence of anomalies captures the seasonality of the ozone trends remarkably well. In the southern hemisphere, the springtime trend only accounts for part of the summertime trends. There is a strong correlation between the ozone anomalies in northern hemisphere spring and those in the subsequent southern hemisphere spring, but not the converse
Spatial Localization in Manufacturing: A Cross-Country Analysis
This paper employs a homogeneous-firm database to investigate industry localization in European countries. More specifically, it compares, across industries and countries, the predictions of two of the most popular localization indexes, that is, the Ellison and Glaeser index of 1997 and the Duranton and Overman index of 2005. Independently from the index used, it is found that localization is a pervasive phenomenon in all countries studied; and the degree of localization is very unevenly distributed across industries in each country. Furthermore, it is shown that in all countries localized sectors are mainly ‘traditional’ sectors or, if one controls for country industrial structures, science-based sectors. Moreover, it is found that the two indexes significantly diverge in predicting the intensity of localization of the same industry both across and within countries. In turn, these differences point to the different role played by pecuniary versus non-pecuniary externalities in driving firms' location decisions
Quantum dynamics of a high-finesse optical cavity coupled with a thin semi-transparent membrane
We study the quantum dynamics of the cavity optomechanical system formed by a
Fabry-Perot cavity with a thin vibrating membrane at its center. We first
derive the general multimode Hamiltonian describing the radiation pressure
interaction between the cavity modes and the vibrational modes of the membrane.
We then restrict the analysis to the standard case of a single cavity mode
interacting with a single mechanical resonator and we determine to what extent
optical absorption by the membrane hinder reaching a quantum regime for the
cavity-membrane system. We show that membrane absorption does not pose serious
limitations and that one can simultaneously achieve ground state cooling of a
vibrational mode of the membrane and stationary optomechanical entanglement
with state-of-the-art apparatuses.Comment: 14 pages, 7 figure
- …
