80 research outputs found

    Pathway to investigate and assess the performance of solar ON-Grid plant

    Get PDF
    This study investigates the long-term performance of a 52-kW on-grid solar PV plant in the Mechanical ‘C’ block, SRM Institute of Science and Technology (SRMIST). This article delivers a simple approach that would act as a pivot for PV system assessment. Therefore, methodologies like Energy yield analysis, Energy distribution, and Life cycle costing are implemented. This empowers the methods to facilitate pre-auditing, energy conservation, and economic analysis. The performance ratio and a capacity factor of the 52-kW PV plant in 2020 are determined as 60% and 12.8%, respectively. The study offers that the plant has a less simple payback period and energy pack time for 2020. From this study, the issues identified in the plant are highlighted with the solution. It also paves the way for the researchers to suggest the solutions for the underutilisation of the plant, especially in the situations like fault occurrence, pandemic conditions, etc

    BioPP: a tool for web-publication of biological networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cellular processes depend on the function of intracellular molecular networks. The curation of the literature relevant to specific biological pathways is important for many theoretical and experimental research teams and communities. No current tool supports web publication or hosting of user-developed large scale annotated pathway diagrams. Sharing via web publication is needed to allow real-time access to the current literature pathway knowledgebase, both privately within a research team or publicly among the outside research community. Web publication also facilitates team and/or community input into the curation process while allowing centralized control of the curation and validation process. We have developed new tool to address these needs. Biological Pathway Publisher (BioPP) is a software suite for converting CellDesigner Systems Biology Markup Language (CD-SBML) formatted pathways into a web viewable format. The BioPP suite is available for private use and for depositing knowledgebases into a newly created public repository.</p> <p>Results</p> <p>BioPP suite is a web-based application that allows pathway knowledgebases stored in CD-SBML to be web published with an easily navigated user interface. The BioPP suite consists of four interrelated elements: a pathway publisher, an upload web-interface, a pathway repository for user-deposited knowledgebases and a pathway navigator. Users have the option to convert their CD-SBML files to HTML for restricted use or to allow their knowledgebase to be web-accessible to the scientific community. All entities in all knowledgebases in the repository are linked to public database entries as well as to a newly created public wiki which provides a discussion forum.</p> <p>Conclusion</p> <p>BioPP tools and the public repository facilitate sharing of pathway knowledgebases and interactive curation for research teams and scientific communities. BioPP suite is accessible at <url>http://tsb.mssm.edu/pathwayPublisher/broadcast/</url></p

    Investigation of Shear Stud Performance in Flat Plate Using Finite Element Analysis

    Get PDF
    Three types of shear stud arrangement, respectively featuring an orthogonal, a radial and a critical perimeter pattern, were evaluated numerically. A numerical investigation was conducted using the finite element software ABAQUS to evaluate their ability to resist punching shear in a flat plate. The finite element analysis here is an application of the nonlinear analysis of reinforced concrete structures using three-dimensional solid finite elements. The nonlinear characteristics of concrete were achieved by employing the concrete damaged plasticity model in the finite element program. Transverse shear stress was evaluated using finite element analysis in terms of shear stress distribution for flat plate with and without shear stud reinforcement. The model predicted that shear studs placed along the critical perimeter are more effective compared to orthogonal and radial patterns

    Noise Propagation in Two-Step Series MAPK Cascade

    Get PDF
    Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to occur and thereby strongly affects the cellular response. Commonly used linearization method (LM) applied to Langevin type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA) and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks

    Smart energy monitoring and power quality performance based evaluation of 100-kW grid tied PV system

    Get PDF
    Globally, the demand for energy from renewable sources is growing due to the increasing electricity consumption and the pollution of fossil fuels. The government has framed various policies to facilitate green energy generation, encouraging renewable energy source usage through PV installations in multiple sectors, including educational institutions. The primary objective of this paper is to propose a methodological approach for analysing the performance of the installed PV system on the rooftop of a university building in Tamil Nadu, India. The site selected is favourable for electricity generation from PV systems with an average global solar radiation of 5.82 kWh/m2day. Solar energy changes periodically with annual and daily variations and is not steady due to seasonal changes. The step-by-step performance assessment and the annual performance of the 100-kW solar PV system, which was instituted in 2019, with the forecasted parameters, are presented in this paper. Therefore, the assessment analysis is carried out in four phases: feasibility assessment, Energy yield assessment, Life cycle assessment, and Power quality assessment. To improve the solar PV output and efficiency, considering the solar irradiation, temperature, wind velocity, etc., PV yield is measured to evaluate the PV system\u27s energy metrics. This paper also considers the carbon credits earned, solar power generated in the location, and the payback period. The power quality assessment is carried out in this paper to test the PV plant\u27s compliance with effective grid integration

    Stability analysis of the GAL regulatory network in Saccharomyces cerevisiae and Kluyveromyces lactis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the yeast <it>Saccharomyces cerevisiae</it>, interactions between galactose, Gal3p, Gal80p, and Gal4p determine the transcriptional status of the genes required for the galactose utilization. Increase in the cellular galactose concentration causes the galactose molecules to bind onto Gal3p which, via Gal80p, activates Gal4p, which induces the GAL3 and GAL80 gene transcription. Recently, a linear time-invariant multi-input multi-output (MIMO) model of this GAL regulatory network has been proposed; the inputs being galactose and Gal4p, and the outputs being the active Gal4p and galactose utilization. Unfortunately, this model assumes the cell culture to be homogeneous, although it is not so in practice. We overcome this drawback by including more biochemical reactions, and derive a quadratic ordinary differential equation (ODE) based model.</p> <p>Results</p> <p>We show that the model, referred to above, does not exhibit bistability. We establish sufficiency conditions for the domain of attraction of an equilibrium point of our ODE model for the special case of full-state feedback controller. We observe that the GAL regulatory system of <it>Kluyveromyces lactis </it>exhibits an aberration of monotone nonlinearity and apply the Rantzer multipliers to establish a class of stabilizing controllers for this system.</p> <p>Conclusion</p> <p>Feedback in a GAL regulatory system can be used to enhance the cellular memory. We show that the system can be modeled as a quadratic nonlinear system for which the effect of feedback on the domain of attraction of the equilibrium point can be characterized using <it>linear matrix inequality </it>(LMI) conditions that are easily implementable in software. The benefit of this result is that a mathematically sound approach to the synthesis of full-state and partial-state feedback controllers to regulate the cellular memory is now possible, irrespective of the number of state-variables or parameters of interest.</p

    Genome-Wide Polymorphism and Comparative Analyses in the White-Tailed Deer (Odocoileus virginianus): A Model for Conservation Genomics

    Get PDF
    The white-tailed deer (Odocoileus virginianus) represents one of the most successful and widely distributed large mammal species within North America, yet very little nucleotide sequence information is available. We utilized massively parallel pyrosequencing of a reduced representation library (RRL) and a random shotgun library (RSL) to generate a complete mitochondrial genome sequence and identify a large number of putative single nucleotide polymorphisms (SNPs) distributed throughout the white-tailed deer nuclear and mitochondrial genomes. A SNP validation study designed to test specific classes of putative SNPs provides evidence for as many as 10,476 genome-wide SNPs in the current dataset. Based on cytogenetic evidence for homology between cow (Bos taurus) and white-tailed deer chromosomes, we demonstrate that a divergent genome may be used for estimating the relative distribution and density of de novo sequence contigs as well as putative SNPs for species without draft genome assemblies. Our approach demonstrates that bioinformatic tools developed for model or agriculturally important species may be leveraged to support next-generation research programs for species of biological, ecological and evolutionary importance. We also provide a functional annotation analysis for the de novo sequence contigs assembled from white-tailed deer pyrosequencing reads, a mitochondrial phylogeny involving 13,722 nucleotide positions for 10 unique species of Cervidae, and a median joining haplotype network as a putative representation of mitochondrial evolution in O. virginianus. The results of this study are expected to provide a detailed template enabling genome-wide sequence-based studies of threatened, endangered or conservationally important non-model organisms
    corecore