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Abstract. Three types of shear stud arrangement, respectively featuring an 

orthogonal, a radial and a critical perimeter pattern, were evaluated numerically. 

A numerical investigation was conducted using the finite element software 

ABAQUS to evaluate their ability to resist punching shear in a flat plate. The 

finite element analysis here is an application of the nonlinear analysis of 

reinforced concrete structures using three-dimensional solid finite elements. The 

nonlinear characteristics of concrete were achieved by employing the concrete 

damaged plasticity model in the finite element program. Transverse shear stress 

was evaluated using finite element analysis in terms of shear stress distribution 

for flat plate with and without shear stud reinforcement. The model predicted 

that shear studs placed along the critical perimeter are more effective compared 

to orthogonal and radial patterns. 

Keywords: flat plate; ABAQUS; shear reinforcement; punching shear strength; slab 

column connection; concrete damaged plasticity. 

1 Introduction 

A flat-plate system consists of reinforced concrete slabs of uniform thickness, 

without beams, drops or column capitals, which transfer loads directly to 

supporting columns. The main advantages of this system are reduced storey 

height and simple formwork, leading to fast construction and further reduction 

of material costs. Architecturally, the location of the columns and walls is not 

restricted by the location of any beams. Flat plate can be constructed as thin as 

125 mm [1]. For these reasons, flat plate is widely used for multi-story 

structures. However, in flat-plate structures, the slab-column connection is 

subjected to a combination of high bending moments and high shear stresses, 

which can lead to brittle punching shear failure at a load that is well below its 

flexural strength. Punching shear capacity is influenced by thickness of slab, 

flexural reinforcement, grade of concrete, size of column, etc. Most building 

codes mention that provision of shear reinforcement will increase the punching 

shear capacity of the slab-column connection. The performance of many types 

of shear reinforcement, including vertical and inclined stirrups, shear studs, 
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bent-up bars, hooked bars, and welded wire fabrics, has been tested extensively 

in the last few decades. Among these, shear studs show the best performance in 

both punching shear resistance and ductility [2]. The critical section for 

punching shear is at a distance of d/2 (d = effective depth) from the face of the 

column. When the shear stress at the critical section exceeds the design value, 

shear reinforcement should be provided. Shear stresses should be investigated at 

successive sections from the support and shear reinforcement should be 

provided up to a section where shear stress does not exceed the allowable shear 

strength of the concrete. 

The finite element method is a numerical technique widely used in the 

engineering field. With the advancement of the understanding of the material 

properties of concrete, various constitutive laws and failure criteria have been 

developed to model the behavior of concrete. Therefore, an increasing number 

of researchers are using finite element analysis to study the response of 

reinforced concrete structures. Finite element modeling of a flat-plate system 

requires that the punching shear failure of the slab column connections is 

reproduced properly. Such a simulation has been the focus of many numerical 

studies using various elements. 

ABAQUS is a well-established commercial finite element code. Its constitutive 

models treat concrete as a continuous isotropic linearly elastic-plastic strain-

hardening fracture material. The software provides the capability of simulating 

damage using three crack models for reinforced concrete elements: (i) the 

smeared crack concrete model; (ii) the brittle crack concrete model; and (iii) the 

concrete damaged plasticity model. Out of these three models, the concrete 

damaged plasticity model was selected for the present study because this 

technique has the potential to represent complete inelastic behavior of concrete 

both in tension and in compression, including damaged characteristics. The 

concrete damaged plasticity model assumes that the two main failure 

mechanisms in concrete are tensile cracking and compression crushing.  

2 Research Significance 

Eurocode 2 and ACI codes recommend the arrangement of shear studs around 

the slab-column connection in orthogonal and radial patterns. In an orthogonal 

pattern, shear studs are placed parallel to the column edges, which will arrest 

crack propagation in the orthogonal direction. In a radial pattern, shear studs are 

arranged along radial lines. This will arrest crack propagation in the radial 

direction. A critical perimeter pattern is a combination of orthogonal and radial 

patterns that can arrest crack propagation in both directions. According to ACI 

421.1R [3], the gap between two shear stud lines should not exceed a distance 

of 2d, which can be maintained with a critical perimeter pattern but is not 
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feasible with the other two patterns. This paper examines the effectiveness of 

orthogonal, radial and critical perimeter patterns as shown in Figure 1. 

   

 

 

 (a) Orthogonal pattern        (b) Radial pattern    (c) Critical perimeter pattern 

Figure 1 Arrangement of shear studs. 

3 Finite Element Model 

In order to incorporate the nonlinear behavior of the concrete, the concrete 

damaged plasticity model in ABAQUS was used. This provides a general 

capability for modeling concrete and other quasi-brittle materials in all types of 

structures (beams, trusses, shells, and solids). This model uses the concepts of 

isotropic damaged elasticity in combination with isotropic tensile and 

compressive plasticity to represent the inelastic behavior of concrete. This 

model is designed for applications in which the concrete is subjected to arbitrary 

loading conditions, including cyclic loading. The model takes into consideration 

the degradation of elastic stiffness induced by plastic straining both in tension 

 

 

 

 

 

Figure 2 Response of concrete to uniaxial loading in tension. 
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and compression. It also accounts for stiffness recovery effects under cyclic 

loading. The model is a continuum, plasticity-based damage model for concrete. 

It assumes that the main two failure mechanisms are tensile cracking and 

compressive crushing of the concrete material. The evolution of the yield (or 

failure) surface is controlled by two hardening variables linked to failure 

mechanisms under tension and compression loading. The response of concrete 

to uniaxial loading, both in tension and compression, are shown in Figures 2 

and 3 (ABAQUS manual). Input parameters required for this model are 

plasticity, compression and tension, which are described below. 

 

 

 

 

 

Figure 3 Response of concrete to uniaxial loading in compression. 

3.1 Plasticity Parameters 

There are five parameters that need to be defined to solve the Drucker-Prager 

plastic flow function and the yield function proposed by Lubliner, et al. [4]. To 

obtain exact values of the various parameters for the concrete damaged 

plasticity model, a uniaxial compression test, a uniaxial tension test, a biaxial 

failure in plane state of stress and triaxial test would have to be carried out for 

the material, but due to the lack of sufficient information, the default parameters 

in ABAQUS and the parameters proposed in other publications have been used. 

The parameters needed to describe the plastic properties of concrete are:   

3.1.1 Dilation Angle ψ 

The ratio of volume change to shear strain is called the dilation angle. In the 

Drucker-Prager formulation, the value of the dilation angle is to be determined 

for the element under biaxial compression at high confining pressures. 

According to Vermeer and de Borst [5], the typical dilation angle for concrete is 

12° and this value was used in this model. 
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3.1.2 Eccentricity 

This parameter is the rate at which the Drucker-Prager function approaches the 

asymptote. With an eccentricity tending to zero the plastic flow tends to a 

straight line. In further calculations, an eccentricity of 0.1 was used. This value 

is used to get a soft curvature of the potential flow and provides almost the same 

dilation angle for a wide range of confining pressure values. 

3.1.3 σco/σbo Parameter 

This is the ratio of the initial equibiaxial compressive strength to the uniaxial 

compressive strength. This parameter is necessary to solve the yield function. 

The default value 1.16 was used in this model. 

3.1.4 Viscosity Parameter 

The viscosity parameter is required when a convergence problem is caused by 

softening behavior. As flat-plate models cause convergence difficulties, the 

viscosity parameter was assumed to be 0.05. 

3.1.5 Kc Parameter 

The value of the Kc parameter is to be determined considering the yield surface 

in the deviatory plane, as shown in Figure 4 (ABAQUS manual). Kc is the ratio 

of the second stress invariant on the tensile stress meridian (T.M.) to the second 

stress invariant on the compressive stress meridian (C.M.). The value 2/3 was 

used in the calculations. 

 

 

 

 

 

Figure 4 Yield surfaces in deviatory plane. 
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3.1.6 Compressive Behavior  

An accurate model of the compressive behavior is necessary for this analysis. 

Values of ultimate strength, yield strength and compression damage were taken 

from the ABAQUS verification manual, which assumes that the yield strength 

is 74% of the ultimate strength and the plastic strain at failure is 0.12% 

3.1.7 Tensile Behavior 

The concrete damaged plasticity model allows determination of post failure 

behavior in tension by defining strain, crack opening or fracture energy towards 

plastic tensile stress. These three options are related to one another and the 

choice of them depends on the knowledge of structural behavior and material. 

The input values required for tensile behavior were taken from the ABAQUS 

verification manual [6]. 

4 Modeling of Flat Plate 

To analyze the effectiveness of different shear stud arrangements, four flat-plate 

slabs were modeled. Slab 1 was modeled without shear studs; slab 2 was 

 

 

(a) Slab 1                                     (b) Slab 2 

 

(c) Slab 3        (d) Slab 4 

Figure 5 Slab models. 

modeled with shear studs in an orthogonal pattern; slab 3 was modeled with the 

studs in a radial pattern, and in slab 4 the studs were placed in a critical 
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perimeter pattern as a matrix grid, as shown in Figure 5. The size, shape and 

elements of the flat-plate model selected for this study are similar to the ones 

used by H. Marzouk, et al. [2]. Slabs with a size of 1500 mm x 1500 mm x 125 

mm were modeled with 4107 eight node linear hexahedral elements (C3D8R) 

(Figure 6). Each element has eight corner nodes, and each node has three 

degrees of freedom (translation in the X, Y and Z direction). The concrete is 

assumed to be homogeneous and isotropic. 

 

Figure 6 Finite Element Model of slab. 

The slab is simply supported along the four sides and load is applied at a 

column stub area of 200 mm x 200 mm (Figure 7). To avoid movement and 

rotation of the plane, two opposite corners are fixed [7]. The column stub is 

represented as a uniform load applied over an area 200 mm x 200 mm 

equivalent to the area of the stub, as is generally used in this kind of slab 

analysis.  

 

Figure 7 Flat-plate model. 

Since the punching failure of the slab is being studied and not the joint stiffness 

as a whole, the assumption made is a reasonable one. Thus, the situation of 

stress concentration in the corner area, which causes difficulties in concrete 
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modeling, is avoided. There are 7 and 6 pieces of 8 mm ф bar at the bottom and 

top respectively in both directions. Flexural reinforcement was modeled with 20 

linear truss elements (T3D2) and provided as per direct design method. 

Interaction between the concrete and the reinforcing steel was achieved by 

using an interaction module in which reinforcement is implemented as elements 

embedded in the concrete’s host elements. Therefore, the assumed ideal 

bonding behavior between the concrete and the reinforcing steel has to be taken 

into account. A shear stud was modeled with 1308 four node tetrahedral 

elements (C3D4) (Figure 8) with an 8 mm diameter stem and a 24 mm head 

diameter, similar to the one used by Carl Eriks Broms [8]. There are 24 pieces 

 

 

Figure 8 Finite element model of shear stud. 

Table 1 Compressive Stress-Strain values for Concrete. 

Sl. 

No. 

Stress 

(N/mm
2
 ) 

Inelastic Strain 
Compression Damage 

Factor 

1 24.00 0.0000 0.000 

2 29.20 0.0004 0.129 

3 31.70 0.0008 0.242 

4 32.30 0.0012 0.341 

5 31.76 0.0016 0.426 

6 30.37 0.0020 0.501 

7 28.50 0.0024 0.566 

8 21.90 0.0036 0.714 

9 14.89 0.0050 0.824 

10 2.95 0.0100 0.969 

of shear studs provided at a distance of d/2 from the face of the column and at 

an interval of 0.75d for all three slabs. Many trials were carried out for mesh 

convergence to obtain reliable results with a finer mesh. The software evaluates 
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all shear and normal stresses at each node, out of which shear stress S12 is 

considered in the comparison. Suitable material properties, compressive and 

tensile stress-strain behavior of concrete from the ABAQUS verification manual 

were used in this model (Table 1-3). 

Table 2 Tensile Stress-Strain Values for Concrete. 

Sl. 

No. 

Stress 

(N/mm
2
 ) 

Cracking 

Strain 

Tensile Damage 

Factor 

1 1.780 0.0000 0.00 

2 1.450 0.0001 0.30 

3 1.113 0.0003 0.55 

4 0.960 0.0004 0.70 

5 0.800 0.0005 0.80 

6 0.536 0.0008 0.90 

7 0.359 0.0010 0.93 

8 0.161 0.002 0.95 

Table 3 Material properties. 

Material 
Elastic modulus 

(MPa) 
Density 

Poissons 

ratio 

Concrete 26480 24 KN/m
3
 0.167 

Steel 200000 7800 Kg/m
3
 0.300 

5 Comparison between FEM Results and Code Predictions 

The FEM results of the punching shear strength were compared with the 

predictions based on the equations specified in ACI-318M-08 [9], CEB-FIP MC 

90 [10] and Eurocode 2 [11]. 

ACI 318M-08 has the expression for the nominal shear strength of concrete 

given by  

        √  
     (1)    

where √  
  should not exceed 8.3Mpa. 

The variable b is the perimeter of the critical section located at a distance of 

0.5d from the faces of the column. 

The Eurocode 2 provisions are effectively identical to those of CEB-FIP MC 90 

with the expression of the nominal shear strength of concrete given by 



 Investigation of Shear Stud Performance in Flat Plate 337 
 

        [  √
   

 
]          

       , (2) 

where          and the term 200/d should not exceed 1.  

The characteristic concrete cylinder strength     is limited to 50MPa and ρ 

(flexural reinforcement ratio), calculated as    √    , is limited to a 

maximum of 0.02. 

Nominal shear strength with shear studs is given by, 
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where α is angle between shear reinforcement and plane of slab. 

             if 0.5d < s1.5d  (ACI 421.1R)        (6) 

Nominal shear strength Vn2 outside shear reinforcement is given by, 
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where u is the perimeter of the outer most peripheral line of the shear 

reinforcement. 

The FEM results are compared with the predictions according to ACI421.1R-99 

and CEB-FIP Model Code1990 in Table 4. 

Table 4 FEM results versus code predictions. 

S. No. 
Specimen Slab2 Slab3 Slab4 

Code 
ACI 

421.1R 
MC 90 

ACI 

421.1R 
MC 90 

ACI 

421.1R 
MC 90 

1 Vc,  kN 181 79 181 79 181 79 

2 Vn1,kN 352 386 352 386 352 386 

3 Vn1,max,kN 271 473 271 473 271 473 

4 Vn2,kN 192 235 166 212 168 214 

5 Vpred,kN 271 386 271 386 271 386 

6 VFEM,kN 255 276 281 

7 VFEM,/ Vpred 0.94 0.66 1.01 0.72 1.03 0.73 
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6 Results and Discussion 

The investigation of transverse shear stress around the slab-column connection 

has been carried out using finite element analysis because it is difficult to obtain 

this distribution and its associated parameters from experimental investigation. 

Results obtained from this model are reliable for three reasons: (i) the load-

deflection response of the flat-plate system (Figure 9) obtained from this model 

is similar to the one obtained by many experimental investigations by other 

researchers; (ii) the high shear-stress concentration in the top surface of the slab 

near the loading face (0.5d to 2d) matches with the critical section for shear 

mentioned by various building codes (Figure 10); and (iii) the truncated cone 

visualized in the plastic strain result of this model (Figure 11) resembles the 

formation of the punching cone caused by the diagonal cracking around the 

column.      

 

Figure 9 Load vs. deflection curve. 

 

Figure 10 Shear stress concentration. 
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Figure 11 Crack pattern of punching shear failure. 

In slab 1, a node that attained the maximum shear stress value was identified, 

along which seven nodes were selected from the face of the column to a 

distance of 2d. At these selected nodes, shear stress distribution in slab 1, slab 2, 

slab 3, and slab 4 was determined at an ultimate load of 228kN, 255kN, 276kN 

and 281kN, respectively. From the graph (Figure 12) it is very clear that the 

shear stress value of the concrete for the slab with shear studs at most of the 

nodes was well below that of the slab without shear studs. Slab 3 and slab 4 

showed very good performance against punching shear strength compared to 

slab 2.  

 

Figure 12 Shear stress distribution of concrete. 

A comparison of maximum punching shear strength, ultimate shear stress, and 

maximum central deflection of all four slabs is shown in Table 5. The enhanced 
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studs are arranged in two rows that are within 1.5d distance from the column 

face, whereas in the orthogonal and radial patterns, the studs are in three rows 

that are at a distance of up to 2d. 

Table 5 Finite Element Analysis Results. 

Specimen Shear 

reinforcement 
Ultimate shear 

stress (MPa) 
Ultimate load 

(KN) 

Central 

Deflection 

(mm) 
Slab 1 None 3.72 228 28.7 

Slab 2 Orthogonal 

pattern 4.8 255 50.1 

Slab 3 Radial pattern 3.66 276 54.39 

Slab 4 Critical perimeter 

pattern 5.95 281 79.4 

7 Conclusions 

In this paper, a nonlinear analysis of flat-plate systems with three different shear 

stud arrangements was performed using the ABAQUS software program. Based 

on the numerical results, it can be concluded that away from the face of the 

column, shear stress reduces gradually. The punching shear strength is higher 

for the critical perimeter pattern than for the other patterns. The critical 

perimeter pattern and radial pattern show improved ductility characteristics 

compared to the orthogonal pattern. This model agrees well with ACI prediction 

compared to CEB-FIP MC 90 prediction. 

Nomenclature 

AV = Total area of shear reinforcement on peripheral line around 

column 
C = Width of circular column 

D = Effective depth of slab 

dc = Compression damage factor 

E0 = Initial elastic stiffness 

fy = Yield strength of reinforcing steel 

fc’ = Concrete compressive strength of cylinder 

S = Spacing of stirrup 

Vc = Nominal punching capacity of concrete without shear 

reinforcement 
Vpred = Predicted shear strength of slab; maximum of {[minimum of 

Row2 and Row3] and Row 4} of Table 4 
VFEM = Shear strength determined using finite element analysis 
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Vn1 = Nominal punching capacity with shear reinforcement 

Vn1,max = Upper bound for punching capacity 

Vn2 = Nominal shear strength outside shear reinforcement zone 

 ̃ 
   = Equivalent plastic strain in tension 

 ̃ 
   = Equivalent plastic strain in compression 

dt = Tension damage factor 

εt
el = Elastic strain in tension 

εc
el = Elastic strain in compression 

Ρ = Flexural reinforcement ratio 

ρx = Flexural reinforcement ratio in x direction 

ρy = Flexural reinforcement ratio in y direction 
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