14 research outputs found

    Design space reduction in optimization using generative topographic mapping

    No full text
    Dimension reduction in design optimization is an extensively researched area. The need arises in design problems dealing with very high dimensions, which increase the computational burden of the design process because the sample space required for the design search varies exponentially with the dimensions. This work describes the application of a latent variable method called Generative Topographic Mapping (GTM) in dimension reduction of a data set by transformation into a low-dimensional latent space. The attraction it presents is that the variables are not removed, but only transformed and hence there is no risk of missing out on information relating to all the variables. The method has been tested on the Branin test function initially and then on an aircraft wing weight problem. Ongoing work involves finding a suitable update strategy for adding infill points to the trained GTM in order to converge to the global optimum effectively. Three update methods tested on GTM so far are discussed

    Dimension reduction for design optimization

    No full text

    Dimension reduction for design optimization

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Constrained design optimization using generative topographic mapping

    No full text
    High-dimensional design-optimization problems involving complex and time-consuming solvers present computational challenges and are expensive to execute. Even though surrogate models can replace these expensive problems with simpler models, the initial design of experiment for constructing these models effectively is still exponential to the dimension of the problem. Traditional screening methods in optimization reduce the dimension of the problem by discarding variables, which is undesirable. In this paper, a latent variable model called generative topographic mapping is proposed to reduce the dimension of the problem so as to facilitate an optimization search in a low-dimensional space without removing any variables from the design problem. The method works by transforming high-dimensional data to be embedded on a low dimensional manifold. It is demonstrated on a two-dimensional Branin function subjected to nonlinear constraints and then applied to real engineering constrained optimization problems of an aircraft wing design and an aircraft compressor rotor. The model developed in this work proved to be more effective in dealing with constrained optimization problems by effectively learning the constraint boundary, hence finding feasible best designs when compared to other surrogate models like kriging

    Electric Vehicle Integration into Road Transportation, Intelligent Transportation, and Electric Power Systems: An Abu Dhabi Case Study

    No full text
    Recently, electric vehicles (EV) have gained much attention as a potential enabling technology to support CO2 emissions reduction targets. Relative to their internal combustion vehicle counterparts, EVs consume less energy per unit distance, and add the benefit of not emitting any carbon dioxide in operation and instead shift their emissions to the existing local fleet of power generation. However, the true success of EVs depends on their successful integration with the supporting infrastructure systems. Building upon the recently published methodology for the same purpose, this paper presents a “systems-of-systems” case study assessing the impacts of EVs on these three systems in the context of Abu Dhabi. For the physical transportation system, a microscopic discrete-time traffic operations simulator is used to predict the kinematic state of the EV fleet over the duration of one day. For the impact on the intelligent transportation system (ITS), the integration of EVs into Abu Dhabi is studied using a multi-domain matrix (MDM) of the Abu Dhabi Department of Transportation ITS. Finally, for the impact on the electric power system, the EV traffic flow patterns from the CMS are used to calculate the timing and magnitude of charging loads. The paper concludes with the need for an intelligent transportation-energy system (ITES) which would coordinate traffic and energy management functionality

    Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: Preliminary findings.

    No full text
    Translation of radiomics into the clinic may require a more comprehensive understanding of the underlying morphologic tissue characteristics they reflect. In the context of prostate cancer (PCa), some studies have correlated gross histological measurements of gland lumen, epithelium, and nuclei with disease appearance on MRI. Quantitative histomorphometry (QH), like radiomics for radiologic images, is the computer based extraction of features for describing tumor morphology on digitized tissue images. In this work, we attempt to establish the histomorphometric basis for radiomic features for prostate cancer by (1) identifying the radiomic features from T2w MRI most discriminating of low vs. intermediate/high Gleason score, (2) identifying QH features correlated with the most discriminating radiomic features previously identified, and (3) evaluating the discriminative ability of QH features found to be correlated with spatially co-localized radiomic features. On a cohort of 36 patients (23 for training, 13 for validation), Gabor texture features were identified as being most predictive of Gleason grade on MRI (AUC of 0.69) and gland lumen shape features were identified as the most predictive QH features (AUC = 0.75). Our results suggest that the PCa grade discriminability of Gabor features is a consequence of variations in gland shape and morphology at the tissue level
    corecore