5 research outputs found

    Evolution of Electronic Circuits using Carbon Nanotube Composites

    Get PDF
    Evolution-in-materio concerns the computer controlled manipulation of material systems using external stimuli to train or evolve the material to perform a useful function. In this paper we demonstrate the evolution of a disordered composite material, using voltages as the external stimuli, into a form where a simple computational problem can be solved. The material consists of single-walled carbon nanotubes suspended in liquid crystal; the nanotubes act as a conductive network, with the liquid crystal providing a host medium to allow the conductive network to reorganise when voltages are applied. We show that the application of electric fields under computer control results in a significant change in the material morphology, favouring the solution to a classification task

    Computing Based on Material Training: Application to Binary Classification Problems

    Get PDF
    Evolution-in-materio is a form of unconventional computing combining materials' training and evolutionary search algorithms. In previous work, a mixture of single-walled-carbon-nanotubes (SWCNTs) dispersed in a liquid crystal (LC) was trained so that its morphology and electrical properties were gradually changed to perform a computational task. Material-based computation is treated as an optimisation problem with a hybrid search space consisting of the voltages used for creating the electrical field and the material's infinitely possible SWCNT arrangements in LC. In this paper, we study solutions using synthetic data with a non-linear separating boundary. In addition, results for two real life datasets with partly merged classes are presented. The training process is based on a differential evolution (DE) algorithm, which subjects the SWCNT/LC material to repeated electrical charging, leading to progressive morphological and electric conductivity modifications. It is shown that the material configuration the DE algorithm converges to form a non-negligible part of the solution. Furthermore, the problem's complexity is relevant to the properties of the resulting "physical solver". The material structures created when training for a problem allow the retraining for a less complex one. The result is a doubly-trained material that keeps the memory of the original more complex problem. This is not the case for doubly-trained materials where initial training is for the less complex problem. The optimal electric field found by the DE algorithm is also a necessary solution component for the material's output to be interpreted as a computation

    Confidence Measures for Carbon-Nanotube / Liquid Crystals Classifiers

    Get PDF
    This paper focuses on a performance analysis of single-walled-carbon-nanotube / liquid crystal classifiers produced by evolution in materio. A new confidence measure is proposed in this paper. It is different from statistical tools commonly used to evaluate the performance of classifiers in that it is based on physical quantities extracted from the composite and related to its state. Using this measure, it is confirmed that in an untrained state, ie: before being subjected to an algorithm-controlled evolution, the carbon-nanotube-based composites classify data at random. The training, or evolution, process brings these composites into a state where the classification is no longer random. Instead, the classifiers generalise well to unseen data and the classification accuracy remains stable across tests. The confidence measure associated with the resulting classifier's accuracy is relatively high at the classes' boundaries, which is consistent with the problem formulation
    corecore