416 research outputs found

    Modulation by epidermal growth factor of the basal 1,25(OH)2D3 receptor level and the heterologous up-regulation of the 1,25(OH)2D3 receptor in clonal osteoblast-like cells

    Get PDF
    The effects of epidermal growth factor (EGF) on basal 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) receptor level and on parathyroid hormone (PTH)-induced 1,25-(OH)2D3 (OH)2D3 receptor up-regulation were studied in the phenotypically osteoblastic cell line UMR 106. EGF in concentrations exceeding 0.1 ng/ml reduced the number of 1,25(OH)2D3 binding sites without changing the binding affinity. Maximal reduction was 30% at about 1 ng/ml. This reduction was independent of a change in cAMP content. EGF dose-dependently attenuated both PTH-induced 1,25(OH)2D3 receptor up-regulation and PTH-stimulated cAMP production without and effect on the ED50 of the PTH effects. For both PTH responses the IC50 and the maximal effective dose were similar, 0.1 ng/ml an 1 ng/ml EGF, respectively. Reduction was first seen at 0.01 ng/ml EGF. At this concentration. EGF reduced PTH-stimulated 1,25-(OH)2D3 receptor binding without an inhibition of the cAMP response. Time-course studies with 1 ng/ml EGF revealed that at 2 h preincubation EGF reduced the heterologous up regulation by PTH, and maximal inhibition was seen after 4 h. In contrast, PTH-stimulated cAMP production was just significantly inhibited only after 6 h, with 60% inhibition after 24 h preincubation. The effects of prostaglandin E2 and forskolin on both 1,25(OH)2D3 binding and cAMP production were inhibited in a similar fashion. On the other hand, dibutyryl cAMP- and 3-isobutyl-1-methylxanthinestimulated 1,25(OH)2D3 binding were not affected by EGF. Taken together, our results demonstrate that EGF reduces both the basal number of 1,25(OH)2D3 binding sites and the heterologous up-regulation of the 1,25(OH)2D3 receptor. The current data suggest that EGF reduces heterologous upregulation of the 1,25(OH)2D3 receptor independent of as well as dependent on the cAMP messenger system. The EGF effect is not primarily located at the PTH receptor, at cAMP phosphodiesterase, or at protein kinase A level

    Annual patterns in phytoplankton phenology in Antarctic coastal waters explained by environmental drivers

    Get PDF
    Coastal zones of Antarctica harbor rich but highly variable phytoplankton communities. The mechanisms that control the dynamics of these communities are not well defined. Here we elucidate the mechanisms that drive seasonal species succession, based on algal photophysiological characteristics and environmental factors. For this, phytoplankton community structure together with oceanographic parameters was studied over a 5‐year period (2012–2017) at Rothera Station at Ryder Bay (Western Antarctic Peninsula). Algal pigment patterns and photophysiological studies based on fluorescence analyses were combined with data from the Rothera Time‐Series program. Considerable interannual variation was observed, related to variations in wind‐mixing, ice cover and an El Niño event. Clear patterns in the succession of algal classes became manifest when combining the data collected over the five successive years. In spring, autotrophic flagellates with a high light affinity were the first to profit from increasing light and sea ice melt. These algae most likely originated from sea‐ice communities, stressing the role of sea ice as a seeding vector for the spring bloom. Diatoms became dominant towards summer in more stratified and warmer surface waters. These communities displayed significantly lower photoflexibility than spring communities. There are strong indications for mixotrophy in cryptophytes, which would explain much of their apparently random occurrence. Climate models predict continuing retreat of Antarctic sea‐ice during the course of this century. For the near‐future we predict that the marginal sea‐ice zone will still harbor significant communities of haptophytes and chlorophytes, whereas increasing temperatures will mainly be beneficial for diatoms

    Uptake of triiodothyronine sulfate and suppression of thyrotropin secretion in cultured anterior pituitary cells

    Get PDF
    To investigate the uptake of triiodothyronine sulfate (T3S) and its effect on thyrotropin-releasing hormone (TRH)-induced thyrotropin (TSH) secretion, anterior pituitary cells were isolated from euthyroid rats and cultured for 3 days in medium containing 10% fetal calf serum. Incubation was performed at 37°C in medium containing 0.5% bovine serum albumin (BSA). Exposure of the pituitary cells to TRH (0.1 μmol/L) for 2 hours stimulated TSH secretion by 176%. This effect was reduced by approximately 45% after a 2-hour preincubation with T3 (0.001 to 1 μmol/L). A significant inhibitory effect of T3S on TRH-induced TSH release was only observed at a concentration of 1 μmol/L. The uptake of [125I]T3 after 1 hour of incubation was reduced by 40% ± 4% (P < .001) by simultaneous addition of 10 nmol/L unlabeled T3, whereas 1 μmol/L T3S was required to obtain a reduction of the [125I]T3 uptake by 34% ± 2% (P < .001). The amount of T3 present in the unlabeled T3S preparation was 0.25% as determined by radioimmunoassay. When pituitary cells were incubated for 1 hour with [125I]T3S or [125I]T3 both 50,000 cpm/0.25 mL), the uptake of [125I]T3zS expressed as a percentage of the dose was 0.04% ± 0.02% (mean ± SE, n = 4), whereas that of [125I]T3 amounted to 3.0% ± 0.4% (n = 4). In contrast, when hepatocytes were incubated for 1 hour with [125I]T3S, the uptake amounted to 5.1% ± 0.8% (n = 9), whereas that of [125I]T3 was 22.1% ± 1.7% (n = 9). Furthermore, [125I]T3S was as rapidly deiodinated (iodide production, 14.9% ± 2.6%; n = 9) as [125I]T3 (12.1% ± 0.8%, n = 9) by hepatocytes. It is concluded that (1) T3S is poorly taken up by pituitary cells, and (2) the suppressive effect of high concentrations of T3S on TRH-induced TSH secretion and on [125I]T3 uptake can be explained by slight contamination with T3. Thus, it appears that T3S has only a minor biological effect, if any, on the pituitary

    Fibrinolysis during liver transplantation is enhanced by using solvent/detergent virus-inactivated plasma (ESDEP)

    Get PDF
    After the introduction of solvent/detergent-treated plasma (ESDEP) in our hospital, an increased incidence of hyperfibrinolysis was observed (75% vs 29%; P = 0.005) compared with the use of fresh frozen plasma for liver transplantation. To clarify this increased incidence, intraoperative plasma samples of patients treated with fresh frozen plasma or ESDEP were analyzed in a retrospective observational study. During the anhepatic phase, plasma levels of D-dimer (6.58 vs 1.53 microg/mL; P = 0.02) and fibrinogen degradation products (60 vs 23 mg/L; P = 0.018) were significantly higher in patients treated with ESDEP. After reperfusion, differences increased to 23.5 vs 4.7 microg/mL (D-dimer, P = 0.002) and 161 vs 57 mg/L (fibrinogen degradation products, P = 0.001). The amount of plasma received per packed red blood cell concentrate, clotting tests, and levels of individual clotting factors did not show significant differences between the groups. alpha(2)-Antiplasmin levels, however, were significantly lower in patients receiving ESDEP during the anhepatic phase (0.37 vs 0.65 IU/mL; P < 0.001) and after reperfusion (0.27 vs 0.58 IU/mL; P = 0.001). Analysis of alpha(2)-antiplasmin levels in ESDEP alone showed a reduction to 0.28 IU/mL (normal >0.95 IU/mL) because of the solvent/detergent process. Therapeutic consequences for the use of ESDEP in orthotopic liver transplantation are discussed in view of an increased incidence of hyperfibrinolysis caused by reduced levels of alpha(2)-antiplasmin in the solvent/detergent-treated plasma. IMPLICATIONS: The use of solvent/detergent virus-inactivated plasma is of increasing importance in the prevention of human immunodeficiency virus and hepatitis C virus transmission. Since the use of this plasma during orthotopic liver transplantation has increased, the incidence of hyperfibrinolysis was observed. Clotting analysis of the patients revealed small alpha(2)-antiplasmin concentrations because of the solvent/detergent process

    Serum microRNA profiles in athyroid patients on and off levothyroxine therapy

    Get PDF
    BackgroundLevothyroxine replacement treatment in hypothyroidism is unable to restore physiological thyroxine and triiodothyronine concentrations in serum and tissues completely. Normal serum thyroid stimulating hormone (TSH) concentrations reflect only pituitary euthyroidism and, therefore, novel biomarkers representing tissue-specific thyroid state are needed. MicroRNAs (miRNAs), small non-coding regulatory RNAs, exhibit tissue-specific expression patterns and can be detectable in serum. Previous studies have demonstrated differential expression of (precursors of) miRNAs in tissues under the influence of thyroid hormone.ObjectiveTo study if serum miRNA profiles are changed in different thyroid states.Design and methodsWe studied 13 athyroid patients (6 males) during TSH suppressive therapy and after 4 weeks of thyroid hormone withdrawal. A magnetic bead capture system was used to isolate 384 defined miRNAs from serum. Subsequently, the TaqMan Array Card 3.0 platform was used for profiling after individual target amplification.ResultsMean age of the subjects was 44.0 years (range 20-61 years). Median TSH levels were 88.9 mU/I during levothyroxine withdrawal and 0.006 mU/I during LT4 treatment with a median dosage of 2.1 fag/kg. After normalization to allow inter-sample analysis, a paired analysis did not demonstrate a significant difference in expression of any of the 384 miRNAs analyzed on and off LT4 treatment.ConclusionAlthough we previously showed an up-regulation of pri-miRNAs 133b and 206 in hypothyroid state in skeletal muscle, the present study does not supply evidence that thyroid state also affects serum miRNAs in humans

    Genetic analysis of resistance to septoria tritici blotch in the French winter wheat cultivars Balance and Apache

    Get PDF
    The ascomycete Mycosphaerella graminicola is the causal agent of septoria tritici blotch (STB), one of the most destructive foliar diseases of bread and durum wheat globally, particularly in temperate humid areas. A screening of the French bread wheat cultivars Apache and Balance with 30 M. graminicola isolates revealed a pattern of resistant responses that suggested the presence of new genes for STB resistance. Quantitative trait loci (QTL) analysis of a doubled haploid (DH) population with five M. graminicola isolates in the seedling stage identified four QTLs on chromosomes 3AS, 1BS, 6DS and 7DS, and occasionally on 7DL. The QTL on chromosome 6DS flanked by SSR markers Xgpw5176 and Xgpw3087 is a novel QTL that now can be designated as Stb18. The QTLs on chromosomes 3AS and 1BS most likely represent Stb6 and Stb11, respectively, and the QTLs on chromosome 7DS are most probably identical with Stb4 and Stb5. However, the QTL identified on chromosome 7DL is expected to be a new Stb gene that still needs further characterization. Multiple isolates were used and show that not all isolates identify all QTLs, which clearly demonstrates the specificity in the M. graminicola–wheat pathosystem. QTL analyses were performed with various disease parameters. The development of asexual fructifications (pycnidia) in the characteristic necrotic blotches of STB, designated as parameter P, identified the maximum number of QTLs. All other parameters identified fewer but not different QTLs. The segregation of multiple QTLs in the Apache/Balance DH population enabled the identification of DH lines with single QTLs and multiple QTL combinations. Analyses of the marker data of these DH lines clearly demonstrated the positive effect of pyramiding QTLs to broaden resistance spectra as well as epistatic and additive interactions between these QTLs. Phenotyping of the Apache/Balance DH population in the field confirmed the presence of the QTLs that were identified in the seedling stage, but Stb18 was inconsistently expressed and might be particularly effective in young plants. In contrast, an additional QTL for STB resistance was identified on chromosome 2DS that is exclusively and consistently expressed in mature plants over locations and time, but it was also strongly related with earliness, tallness as well as resistance to Fusarium head blight. Although to date no Stb gene has been reported on chromosome 2D, the data provide evidence that this QTL is only indirectly related to STB resistance. This study shows that detailed genetic analysis of contemporary commercial bread wheat cultivars can unveil novel Stb genes that can be readily applied in marker-assisted breeding programs

    Changes in the central component of the hypothalamus-pituitary-thyroid axis in a rabbit model of prolonged critical illness

    Get PDF
    Introduction: Prolonged critically ill patients reveal low circulating thyroid hormone levels without a rise in thyroid stimulating hormone (TSH). This condition is labeled "low 3,5,3'-tri-iodothyronine (T3) syndrome" or "nonthyroidal illness syndrome (NTI)" or "euthyroid sick syndrome". Despite the low circulating and peripheral tissue thyroid hormone levels, thyrotropin releasing hormone (TRH) expression in the hypothalamus is reduced and it remains unclear which mechanism is responsible. We set out to study whether increased hypothalamic T3availability could reflect local thyrotoxicosis and explain feedback inhibition-induced suppression of the TRH gene in the context of the low T3syndrome in prolonged critical illness.Methods: Healthy rabbits were compared with prolonged critically ill, parenterally fed animals. We visualized TRH mRNA in the hypothalamus by in situ-hybridization and measured mRNA levels for the type II iodothyronine diodinase (D2), the thyroid hormone transporters monocarboxylate transporter (MCT) 8, MCT10 and organic anion co-transporting polypeptide 1C1 (OATP1C1) and the thyroid hormone receptors α (TRα) and β (TRβ) in the hypothalamus. We also measured the activity of the D2 and type III iodothyronine deiodinase (D3) enzymes.Results: In the hypothalamus of prolonged critically ill rabbits with low circulating T3 and TSH, we observed decreased TRH mRNA, increased D2 mRNA and increased MCT10 and OATP1C1 mRNA while MCT8 gene expression was unaltered as compared with healthy controls. This coincided with low hypothalamic thyroxine (T4) and low-normal T3concentrations, without a change at the thyroid hormone receptor level.Conclusions: Although expression of D2 and of the thyroid hormone transporters MCT10 and OATP1C1 were increased in the hypothalamus of prolonged critical ill animals, hypothalamic T4and T3content or thyroid hormone receptor expression were not elevated. Hence, decreased TRH gene expression, and hereby low TSH and T3 during prolonged critical illness, is not exclusively brought about by hypothalamic thyrotoxicosis, and infer other TRH suppressing factors to play a role

    A Phytoestrogen-Rich Diet Increases Energy Expenditure and Decreases Adiposity in Mice

    Get PDF
    BACKGROUND: Obesity is an increasingly prevalent health problem, and natural effective therapeutic approaches are required to prevent its occurrence. Phytoestrogens are plant-derived compounds with estrogenic activities; they can bind to both estrogen receptors alpha and beta and mimic the action of estrogens on target organs. OBJECTIVES: The purpose of this study was to examine the influence of soy-derived phytoestrogens on energy balance and metabolism. METHODS: Male outbred mice (CD-1) were allowed ad libitum access to either a high soy-containing diet or a soy-free diet from conception to adulthood. We measured circulating serum isoflavone levels using reverse-phase solid-phase extraction for subsequent liquid chromatography electrospray tandem mass spectrometry analysis. Adult animals were analyzed for body composition by dual-energy X-ray absorptiometry, locomotor activity by running-wheel experiments, respiratory exchange rate by indirect calorimetry, and food intake using metabolic cages. Quantitative reverse transcriptase-polymerase chain reaction was performed to determine the expression of hypothalamic neuropeptide genes. RESULTS: We found that adult mice fed a soy-rich diet had reduced body weight, adiposity, and resistance to cold. This lean phenotype was associated with an increase in lipid oxidation due to a preferential use of lipids as fuel source and an increase in locomotor activity. The modulation of energy balance was associated with a central effect of phytoestrogens on the expression of hypothalamic neuropeptides, including agouti-related protein. CONCLUSION: The data suggest that dietary soy could have beneficial effects on obesity, but they also emphasize the importance of monitoring the phytoestrogen content of diets as a parameter of variability in animal experiments

    Variation of prostate-specific antigen expression in different tumour growth patterns present in prostatectomy specimens

    Get PDF
    A series of 55 randomly chosen radical prostatectomy specimens was analyzed for expression of prostate-specific antigen (PSA) by immunohistochemical techniques. Tissue sections were selected in such a manner that in addition to glandular benign prostatic hyperplasia (BPH), one or more different prostatic tumour growth patterns were present. Four monoclonal antibodies, directed against three different PSA epitopes, and one polyclonal anti-PSA antiserum were used. Expression of PSA was compared with that of prostate-specific acid phosphatase (PAP), recognized by two different polyclonal antisera. A critical dilution aimed at a maximum of staining intensity on BPH tissue sections was chosen for all antibodies. Anti-PSA and anti-PAP antisera stained essentially all BPH samples (over 90%). Irrespective of the nature of the antibodies used, PSA expression was found to be decreased in prostatic carcinoma. A clear cut relationship was found between immunoreactivity for PSA and the degree of differentiation of the tumour area. Under the experimental conditions used the PSA monoclonal antibodies stained only 1 out of 10 undifferentiated carcinomas, whereas 50% to 70% of the well- and moderately-differentiated carcinomas showed immunoreactivity. This correlation was less pronounced with the PAP staining pattern. If the PSA antibody titer was raised the percentage of clearly staining undifferentiated carcinomas could be considerably increased (up to 60%-100%), indicating that PSA expression is not absent, but lowered in most (if not all) undifferentiated carcinomas

    Meiosis Drives Extraordinary Genome Plasticity in the Haploid Fungal Plant Pathogen Mycosphaerella graminicola

    Get PDF
    Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15–20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat field
    corecore