149 research outputs found

    Antibiotic resistance in mucosal bacteria from high Arctic migratory salmonids

    Get PDF
    Two related salmonids, Arctic char (Salvelinus alpinus) and lake whitefish (Coregonus clupeaformis) sampled from the high Arctic region of Nunavut, Canada are anadromous fish, migrating annually from the same ice-covered freshwater waterbodies to spend summers in the marine waters of the Arctic Ocean. Microbiota associated with the skin-associated mucus undergo community change coincident with migration, and irrespective of this turnover, antibiotic resistance was detected in mixed bacterial cultures initiated with mucus samples. Although as expected most bacteria were unculturable, however, 5/7 isolates showed susceptibility to a panel of five common antibiotics. The fish were sampled under severe conditions and at remote locations far from human habitation. Regardless, two isolates, \u27Carnobacterium maltaromaticum sm-2\u27 and \u27Arthrobacter citreus sm\u27, showed multi-resistance to two or more antibiotics including ampicillin and streptomycin indicating multiple resistance genes. It is unknown if these fish bacteria have \u27natural\u27 resistance phenotypes or if resistance has been acquired. As result of these observations, we urge long-term monitoring of drug-resistant bacteria in the region and caution the assumption of a lack of drug-resistant organisms even in such extreme environments

    Anadromous Arctic Char Microbiomes: Bioprospecting in the High Arctic

    Get PDF
    Northern populations of Arctic char (Salvelinus alpinus) can be anadromous, migrating annually from the ocean to freshwater lakes and rivers in order to escape sub-zero temperatures. Such seasonal behavior demands that these fish and their associated microbiomes adapt to changes in salinity, temperature, and other environmental challenges. We characterized the microbial community composition of anadromous S. alpinus, netted by Inuit fishermen at freshwater and seawater fishing sites in the high Arctic, both under ice and in open water. Bacterial profiles were generated by DNA extraction and high-throughput sequencing of PCR-amplified 16S ribosomal RNA genes. Results showed that microbial communities on the skin and intestine of Arctic char were statistically different when sampled from freshwater or saline water sites. This association was tested using hierarchical Ward's linkage clustering, showing eight distinct clusters in each of the skin and intestinal microbiomes, with the clusters reflecting sampling location between fresh and saline environments, confirming a salinity-linked turnover. This analysis also provided evidence for a core composition of skin and intestinal bacteria, with the phyla Proteobacteria, Firmicutes, and Cyanobacteria presenting as major phyla within the skin-associated microbiomes. The intestine-associated microbiome was characterized by unidentified genera from families Fusobacteriaceae, Comamonadaceae, Pseudomonadaceae, and Vibrionaceae. The salinity-linked turnover was further tested through ordinations that showed samples grouping based on environment for both skin- and intestine-associated microbiomes. This finding implies that core microbiomes between fresh and saline conditions could be used to assist in regulating optimal fish health in aquaculture practices. Furthermore, identified taxa from known psychrophiles and with nitrogen cycling properties suggest that there is additional potential for biotechnological applications for fish farm and waste management practices

    Moving magnetoencephalography towards real-world applications with a wearable system

    Get PDF
    Imaging human brain function with techniques such as magnetoencephalography1 (MEG) typically requires a subject to perform tasks whilst their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or in adult studies that require unconstrained head movement (e.g. spatial navigation). Here, we develop a new type of MEG system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible due to the integration of new quantum sensors2,3 that do not rely on superconducting technology, with a novel system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution whilst subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Results compare well to the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterisation of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment, and understanding the pathophysiology of movement disorders

    The optimization of 3.3 kV 4H-SiC JBS diodes

    Get PDF
    The article reports a comprehensive study optimizing the OFF- and ON-state characteristics of 3.3 kV junction barrier Schottky (JBS) diodes made using nickel, titanium, and molybdenum contact metals. In this design, the same implants used in the optimized termination region are used to form the P-regions in the JBS active area. The width and spacing of the P-regions are varied to optimize both the ON- and OFF-state of the device. All the diodes tested displayed high blocking voltages and ideal turn-on characteristics up to the rated current of 2 A. However, the leakage current and the Schottky barrier height (SBH) were found to scale with the ratio of Schottky to p + regions. Full Schottkys, without p + regions, and those with very wide Schottky regions had the lowest SBH (1.61 eV for Ni, 1.11 eV for Mo, and 0.87 eV for Ti) and the highest leakage. Those diodes with the lowest Schottky openings of 2 μm had the lowest OFF-state leakage, but they suffered severe pinching from the surrounding p + regions, increasing their SBH. The best performing JBS diodes were Ni and Mo devices with the narrowest pitch, with the p + implants/Schottky regions both 2 μm wide. These offered the best balanced device design, with excellent OFF-state performance, while the Schottky ratio guaranteed a relatively low forward voltage drop
    corecore