46 research outputs found

    The Impact of Mercury Selection and Conjugative Genetic Elements on Community Structure and Resistance Gene Transfer

    Get PDF
    Carriage of resistance genes can underpin bacterial survival, and by spreading these genes between species, mobile genetic elements (MGEs) can potentially protect diversity within microbial communities. The spread of MGEs could be affected by environmental factors such as selection for resistance, and biological factors such as plasmid host range, with consequences for individual species and for community structure. Here we cultured a focal bacterial strain,Pseudomonas fluorescensSBW25, embedded within a soil microbial community, with and without mercury selection, and with and without mercury resistance plasmids (pQBR57 or pQBR103), to investigate the effects of selection and resistance gene introduction on (1) the focal species; (2) the community as a whole; (3) the spread of the introducedmerresistance operon. We found thatP. fluorescensSBW25 only escaped competitive exclusion by other members of community under mercury selection, even when it did not begin with a mercury resistance plasmid, due to its propensity to acquire resistance from the community by horizontal gene transfer. Mercury pollution had a significant effect on community structure, decreasing alpha diversity within communities while increasing beta diversity between communities, a pattern that was not affected by the introduction of mercury resistance plasmids byP. fluorescensSBW25. Nevertheless, the introducedmerAgene spread to a phylogenetically diverse set of recipients over the 5 weeks of the experiment, as assessed by epicPCR. Our data demonstrates how the effects of MGEs can be experimentally assessed for individual lineages, the wider community, and for the spread of adaptive traits.Peer reviewe

    Antimicrobial Transformation Products in the Aquatic Environment: Global Occurrence, Ecotoxicological Risks, and Potential of Antibiotic Resistance

    Get PDF
    The global spread of antimicrobial resistance (AMR) isconcerningfor the health of humans, animals, and the environment in a One Healthperspective. Assessments of AMR and associated environmental hazardsmostly focus on antimicrobial parent compounds, while largely overlookingtheir transformation products (TPs). This review lists antimicrobialTPs identified in surface water environments and examines their potentialfor AMR promotion, ecological risk, as well as human health and environmentalhazards using in silico models. Our review also summarizesthe key transformation compartments of TPs, related pathways for TPsreaching surface waters and methodologies for studying the fate ofTPs. The 56 antimicrobial TPs covered by the review were prioritizedvia scoring and ranking of various risk and hazard parameters. Mostdata on occurrences to date have been reported in Europe, while littleis known about antibiotic TPs in Africa, Central and South America,Asia, and Oceania. Occurrence data on antiviral TPs and other antibacterialTPs are even scarcer. We propose evaluation of structural similaritybetween parent compounds and TPs for TP risk assessment. We predicteda risk of AMR for 13 TPs, especially TPs of tetracyclines and macrolides.We estimated the ecotoxicological effect concentrations of TPs fromthe experimental effect data of the parent chemical for bacteria,algae and water fleas, scaled by potency differences predicted byquantitative structure-activity relationships (QSARs) for baselinetoxicity and a scaling factor for structural similarity. Inclusionof TPs in mixtures with their parent increased the ecological riskquotient over the threshold of one for 7 of the 24 antimicrobialsincluded in this analysis, while only one parent had a risk quotientabove one. Thirteen TPs, from which 6 were macrolide TPs, posed arisk to at least one of the three tested species. There were 12/21TPs identified that are likely to exhibit a similar or higher levelof mutagenicity/carcinogenicity, respectively, than their parent compound,with tetracycline TPs often showing increased mutagenicity. Most TPswith increased carcinogenicity belonged to sulfonamides. Most of theTPs were predicted to be mobile but not bioaccumulative, and 14 werepredicted to be persistent. The six highest-priority TPs originatedfrom the tetracycline antibiotic family and antivirals. This review,and in particular our ranking of antimicrobial TPs of concern, cansupport authorities in planning related intervention strategies andsource mitigation of antimicrobials toward a sustainable future

    Antimicrobial resistance and the environment : assessment of advances, gaps and recommendations for agriculture, aquaculture and pharmaceutical manufacturing

    Get PDF
    A roundtable discussion held at the fourth International Symposium on the Environmental Dimension of Antibiotic Resistance (EDAR4) considered key issues concerning the impact on the environment of antibiotic use in agriculture and aquaculture, and emissions from antibiotic manufacturing. The critical control points for reducing emissions of antibiotics from agriculture are antibiotic stewardship and the pre-treatment of manure and sludge to abate antibiotic-resistant bacteria. Antibiotics are sometimes added to fish and shellfish production sites via the feed, representing a direct route of contamination of the aquatic environment. Vaccination reduces the need for antibiotic use in high value (e.g. salmon) production systems. Consumer and regulatory pressure will over time contribute to reducing the emission of very high concentrations of antibiotics from manufacturing. Research priorities include the development of technologies, practices and incentives that will allow effective reduction in antibiotic use, together with evidence-based standards for antibiotic residues in effluents. All relevant stakeholders need to be aware of the threat of antimicrobial resistance and apply best practice in agriculture, aquaculture and pharmaceutical manufacturing in order to mitigate antibiotic resistance development. Research and policy development on antimicrobial resistance mitigation must be cognizant of the varied challenges facing high and low income countries.Peer reviewe

    Unraveling the diversity of sedimentary sulfate-reducing prokaryotes (SRP) across Tibetan saline lakes using epicPCR

    Get PDF
    Sulfate reduction is an important biogeochemical process in the ecosphere; however, the major taxa of sulfate reducers have not been fully identified. Here, we used epicPCR (Emulsion, Paired Isolation, and Concatenation PCR) technology to identify the phylogeny of sulfate-reducing prokaryotes (SRP) in sediments from Tibetan Plateau saline lakes. A total of 12,519 OTUs and 883 SRP-OTUs were detected in ten lakes by sequencing of 16S rRNA gene PCR amplicons and epicPCR products of fused 16S rRNA plus dsrB gene, respectively, with Proteobacteria, Firmicutes, and Bacteroidetes being the dominant phyla in both datasets. The 120 highly abundant SRP-OTUs (>1% in at least one sample) were affiliated with 17 described phyla, only 7 of which are widely recognized as SRP phyla. The majority of OTUs from both the whole microbial communities and the SRPs were not detected in more than one specific lake, suggesting high levels of endemism. The -diversity of the entire microbial community and SRP sub-community showed significant positive correlations. The pH value and mean water temperature of the month prior to sampling were the environmental determinants for the whole microbial community, while the mean water temperature and total nitrogen were the major environmental drivers for the SRP sub-community. This study revealed there are still many undocumented SRP in Tibetan saline lakes, many of which could be endemic and adapted to specific environmental conditions.Peer reviewe

    Early-life formula feeding is associated with infant gut microbiota alterations and an increased antibiotic resistance load

    Get PDF
    Background Infants are at a high risk of acquiring fatal infections, and their treatment relies on functioning antibiotics. Antibiotic resistance genes (ARGs) are present in high numbers in antibiotic-naive infants' gut microbiomes, and infant mortality caused by resistant infections is high. The role of antibiotics in shaping the infant resistome has been studied, but there is limited knowledge on other factors that affect the antibiotic resistance burden of the infant gut. Objectives Our objectives were to determine the impact of early exposure to formula on the ARG load in neonates and infants born either preterm or full term. Our hypotheses were that diet causes a selective pressure that influences the microbial community of the infant gut, and formula exposure would increase the abundance of taxa that carry ARGs. Methods Cross-sectionally sampled gut metagenomes of 46 neonates were used to build a generalized linear model to determine the impact of diet on ARG loads in neonates. The model was cross-validated using neonate metagenomes gathered from public databases using our custom statistical pipeline for cross-validation. Results Formula-fed neonates had higher relative abundances of opportunistic pathogens such as Staphylococcus aureus, Staphylococcus epidermidis, Klebsiella pneumoniae, Klebsiella oxytoca, and Clostridioides difficile. The relative abundance of ARGs carried by gut bacteria was 69% higher in the formula-receiving group (fold change, 1.69; 95% CI: 1.12-2.55; P = 0.013; n = 180) compared to exclusively human milk-fed infants. The formula-fed infants also had significantly less typical infant bacteria, such as Bifidobacteria, that have potential health benefits. Conclusions The novel finding that formula exposure is correlated with a higher neonatal ARG burden lays the foundation that clinicians should consider feeding mode in addition to antibiotic use during the first months of life to minimize the proliferation of antibiotic-resistant gut bacteria in infants.Peer reviewe

    Antibiotic Resistomes and Microbiomes in the Surface Water along the Code River in Indonesia Reflect Drainage Basin Anthropogenic Activities

    Get PDF
    Water and sanitation are important factors in the emergence of antimicrobial resistance in low-and middle-income countries. Drug residues, metals, and various wastes foster the spread of antibiotic resistance genes (ARGs) with the help of mobile genetic elements (MGEs), and therefore, rivers receiving contaminants and enfluents from multiple sources are of special interest. We followed both the microbiome and resistome of the Code River in Indonesia from its pristine origin at the Merapi volcano through rural and then city areas to the coast of the Indian Ocean. We used a SmartChip quantitative PCR with 382 primer pairs for profiling the resistome and MGEs and 16S rRNA gene amplicon sequencing to analyze the bacterial communities. The community structure explained the resistome composition in rural areas, while the city sampling sites had lower bacterial diversity and more ARGs, which correlated with MGEs, suggesting increased mobility potential in response to pressures from human activities. Importantly, the vast majority of ARGs and MGEs were no longer detectable in marine waters at the ocean entrance. Our work provides information on the impact of different influents on river health as well as sheds light on how land use contributes to the river resistome and microbiome.Peer reviewe

    Metagenomic Analysis of the Abundance and Composition of Antibiotic Resistance Genes in Hospital Wastewater in Benin, Burkina Faso, and Finland

    Get PDF
    The global emergence and increased spread of antibiotic resistance threaten the effectiveness of antibiotics and, thus, the health of the entire population. Therefore, understanding the resistomes in different geographical locations is crucial in the global fight against the antibiotic resistance crisis.Antibiotic resistance is a global threat to human health, with the most severe effect in low- and middle-income countries. We explored the presence of antibiotic resistance genes (ARGs) in the hospital wastewater (HWW) of nine hospitals in Benin and Burkina Faso, two low-income countries in West Africa, with shotgun metagenomic sequencing. For comparison, we also studied six hospitals in Finland. The highest sum of the relative abundance of ARGs in the 68 HWW samples was detected in Benin and the lowest in Finland. HWW resistomes and mobilomes in Benin and Burkina Faso resembled each other more than those in Finland. Many carbapenemase genes were detected at various abundances, especially in HWW from Burkina Faso and Finland. The bla(GES) genes, the most widespread carbapenemase gene in the Beninese HWW, were also found in water intended for hand washing and in a puddle at a hospital yard in Benin. mcr genes were detected in the HWW of all three countries, with mcr-5 being the most common mcr gene. These and other mcr genes were observed in very high relative abundances, even in treated wastewater in Burkina Faso and a street gutter in Benin. The results highlight the importance of wastewater treatment, with particular attention to HWW.IMPORTANCE The global emergence and increased spread of antibiotic resistance threaten the effectiveness of antibiotics and, thus, the health of the entire population. Therefore, understanding the resistomes in different geographical locations is crucial in the global fight against the antibiotic resistance crisis. However, this information is scarce in many low- and middle-income countries (LMICs), such as those in West Africa. In this study, we describe the resistomes of hospital wastewater in Benin and Burkina Faso and, as a comparison, Finland. Our results help to understand the hitherto unrevealed resistance in Beninese and Burkinabe hospitals. Furthermore, the results emphasize the importance of wastewater management infrastructure design to minimize exposure events between humans, HWW, and the environment, preventing the circulation of resistant bacteria and ARGs between humans (hospitals and community) and the environment.Peer reviewe

    Artificial intelligence : A powerful paradigm for scientific research

    Get PDF
    Y Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. The ML techniques have been developed to analyze high-throughput data with a view to obtaining useful insights, categorizing, predicting, and making evidence-based decisions in novel ways, which will promote the growth of novel applications and fuel the sustainable booming of AI. This paper undertakes a comprehensive survey on the development and application of AI in different aspects of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. The challenges that each discipline of science meets, and the potentials of AI techniques to handle these challenges, are discussed in detail. Moreover, we shed light on new research trends entailing the integration of AI into each scientific discipline. The aim of this paper is to provide a broad research guideline on fundamental sciences with potential infusion of AI, to help motivate researchers to deeply understand the state-of-the-art applications of AI-based fundamental sciences, and thereby to help promote the continuous development of these fundamental sciences.Peer reviewe

    EpicPCR 2.0 : Technical and Methodological Improvement of a Cutting-Edge Single-Cell Genomic Approach

    Get PDF
    EpicPCR (Emulsion, Paired Isolation and Concatenation PCR) is a recent single-cell genomic method based on a fusion-PCR allowing us to link a functional sequence of interest to a 16S rRNA gene fragment and use the mass sequencing of the resulting amplicons for taxonomic assignment of the functional sequence-carrying bacteria. Although it is interesting because it presents the highest efficiency for assigning a bacterial host to a marker, epicPCR remains a complex multistage procedure with technical difficulties that may easily impair the approach depth and quality. Here, we described how to adapt epicPCR to new gene targets and environmental matrices while identifying the natural host range of SXT/R391 integrative and conjugative elements in water microbial communities from the Meurthe River (France). We notably show that adding a supplementary PCR step allowed us to increase the amplicon yield and thus the number of reads obtained after sequencing. A comparison of operational taxonomic unit (OTU) identification approaches when using biological and technical replicates demonstrated that, although OTUs can be validated when obtained from three out of three technical replicates, up to now, results obtained from two or three biological replicates give a similar and even a better confidence level in OTU identification, while allowing us to detect poorly represented SXT/R391 hosts in microbial communities.Peer reviewe

    Antimicrobial Transformation Products in the Aquatic Environment : Global Occurrence, Ecotoxicological Risks, and Potential of Antibiotic Resistance

    No full text
    The global spread of antimicrobial resistance (AMR) isconcerningfor the health of humans, animals, and the environment in a One Healthperspective. Assessments of AMR and associated environmental hazardsmostly focus on antimicrobial parent compounds, while largely overlookingtheir transformation products (TPs). This review lists antimicrobialTPs identified in surface water environments and examines their potentialfor AMR promotion, ecological risk, as well as human health and environmentalhazards using in silico models. Our review also summarizesthe key transformation compartments of TPs, related pathways for TPsreaching surface waters and methodologies for studying the fate ofTPs. The 56 antimicrobial TPs covered by the review were prioritizedvia scoring and ranking of various risk and hazard parameters. Mostdata on occurrences to date have been reported in Europe, while littleis known about antibiotic TPs in Africa, Central and South America,Asia, and Oceania. Occurrence data on antiviral TPs and other antibacterialTPs are even scarcer. We propose evaluation of structural similaritybetween parent compounds and TPs for TP risk assessment. We predicteda risk of AMR for 13 TPs, especially TPs of tetracyclines and macrolides.We estimated the ecotoxicological effect concentrations of TPs fromthe experimental effect data of the parent chemical for bacteria,algae and water fleas, scaled by potency differences predicted byquantitative structure-activity relationships (QSARs) for baselinetoxicity and a scaling factor for structural similarity. Inclusionof TPs in mixtures with their parent increased the ecological riskquotient over the threshold of one for 7 of the 24 antimicrobialsincluded in this analysis, while only one parent had a risk quotientabove one. Thirteen TPs, from which 6 were macrolide TPs, posed arisk to at least one of the three tested species. There were 12/21TPs identified that are likely to exhibit a similar or higher levelof mutagenicity/carcinogenicity, respectively, than their parent compound,with tetracycline TPs often showing increased mutagenicity. Most TPswith increased carcinogenicity belonged to sulfonamides. Most of theTPs were predicted to be mobile but not bioaccumulative, and 14 werepredicted to be persistent. The six highest-priority TPs originatedfrom the tetracycline antibiotic family and antivirals. This review,and in particular our ranking of antimicrobial TPs of concern, cansupport authorities in planning related intervention strategies andsource mitigation of antimicrobials toward a sustainable future.Peer reviewe
    corecore