210 research outputs found

    Penetration of alkali atoms throughout graphene membrane: theoretical modeling

    Full text link
    Theoretical studies of penetration of various alkali atoms (Li, Na, Rb, Cs) throughout graphene membrane grown on silicon carbide substrate are reported and compared with recent experimental results. Results of first principles modeling demonstrate rather low (about 0.8 eV) energy barrier for the formation of temporary defects in carbon layer required for the penetration of Li at high concentration of adatoms, higher (about 2 eV) barrier for Na, and barriers above 4 eV for Rb and Cs. Experiments prove migration of lithium adatoms from graphene surface to the buffer layer and SiC substrate at room temperature, sodium at 100{\deg}C and impenetrability of graphene membrane for Rb and Cs. Differences between epitaxial and free standing graphene for the penetration of alkali ions are also discussed.Comment: 16 pages, 3 figure, accepted to Nanoscal

    Low thermal resistance of a GaN-on-SiC transistor structure with improved structural properties at the interface

    Get PDF
    The crystalline quality of AlGaN/GaN heterostructures was improved by optimization of surface pretreatment of the SiC substrate in a hot-wall metal-organic chemical vapor deposition reactor. X-ray photoelectron spectroscopy measurements revealed that oxygen- and carbon-related contaminants were still present on the SiC surface treated at 1200 \ub0C in H2 ambience, which hinders growth of thin AlN nucleation layers with high crystalline quality. As the H2 pretreatment temperature increased to 1240 \ub0C, the crystalline quality of the 105 nm thick AlN nucleation layers in the studied series reached an optimal value in terms of full width at half-maximum of the rocking curves of the (002) and (105) peaks of 64 and 447 arcsec, respectively. The improvement of the AlN growth also consequently facilitated a growth of the GaN buffer layers with high crystalline quality. The rocking curves of the GaN (002) and (102) peaks were thus improved from 209 and 276 arcsec to 149 and 194 arcsec, respectively. In addition to a correlation between the thermal resistance and the structural quality of an AlN nucleation layer, we found that the microstructural disorder of the SiC surface and the morphological defects of the AlN nucleation layers to be responsible for a substantial thermal resistance. Moreover, in order to decrease the thermal resistance in the GaN/SiC interfacial region, the thickness of the AlN nucleation layer was then reduced to 35 nm, which was shown sufficient to grow AlGaN/GaN heterostructures with high crystalline quality. Finally, with the 35 nm thick high-quality AlN nucleation layer a record low thermal boundary resistance of 1.3 710-8 m2 K/W, measured at an elevated temperature of 160 \ub0C, in a GaN-on-SiC transistor structure was achieved

    Directed self-organization of graphene nanoribbons on SiC

    Full text link
    Realization of post-CMOS graphene electronics requires production of semiconducting graphene, which has been a labor-intensive process. We present tailoring of silicon carbide crystals via conventional photolithography and microelectronics processing to enable templated graphene growth on 4H-SiC{1-10n} (n = 8) crystal facets rather than the customary {0001} planes. This allows self-organized growth of graphene nanoribbons with dimensions defined by those of the facet. Preferential growth is confirmed by Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) measurements, and electrical characterization of prototypic graphene devices is presented. Fabrication of > 10,000 top-gated graphene transistors on a 0.24 cm2 SiC chip demonstrates scalability of this process and represents the highest density of graphene devices reported to date.Comment: 13 pages, 5 figure

    CO2 Laser-Induced Growth of Epitaxial Graphene on 6H-SiC(0001)

    Full text link
    The thermal decomposition of SiC surface provides, perhaps, the most promising method for the epitaxial growth of graphene on a material useful in the electronics platform. Currently, efforts are focused on a reliable method for the growth of large-area, low-strain epitaxial graphene that is still lacking. We report here a novel method for the fast, single-step epitaxial growth of large-area homogeneous graphene film on the surface of SiC(0001) using an infrared CO2 laser (10.6 {\mu}m) as the heating source. Apart from enabling extreme heating and cooling rates, which can control the stacking order of epitaxial graphene, this method is cost-effective in that it does not necessitate SiC pre-treatment and/or high vacuum, it operates at low temperature and proceeds in the second time scale, thus providing a green solution to EG fabrication and a means to engineering graphene patterns on SiC by focused laser beams. Uniform, low-strain graphene film is demonstrated by scanning electron microscopy and x-ray photoelectron, secondary ion mass, and Raman spectroscopies. Scalability to industrial level of the method described here appears to be realistic, in view of the high rate of CO2-laser induced graphene growth and the lack of strict sample-environment conditions.Comment: 32 pages, 5 figures, includes Supporting Informatio

    Surface Chemistry Involved in Epitaxy of Graphene on 3C-SiC(111)/Si(111)

    Get PDF
    Surface chemistry involved in the epitaxy of graphene by sublimating Si atoms from the surface of epitaxial 3C-SiC(111) thin films on Si(111) has been studied. The change in the surface composition during graphene epitaxy is monitored by in situ temperature-programmed desorption spectroscopy using deuterium as a probe (D2-TPD) and complementarily by ex situ Raman and C1s core-level spectroscopies. The surface of the 3C-SiC(111)/Si(111) is Si-terminated before the graphitization, and it becomes C-terminated via the formation of C-rich (6√3 × 6√3)R30° reconstruction as the graphitization proceeds, in a similar manner as the epitaxy of graphene on Si-terminated 6H-SiC(0001) proceeds

    Probing Mechanical Properties of Graphene with Raman Spectroscopy

    Get PDF
    The use of Raman scattering techniques to study the mechanical properties of graphene films is reviewed here. The determination of Gruneisen parameters of suspended graphene sheets under uni- and bi-axial strain is discussed and the values are compared to theoretical predictions. The effects of the graphene-substrate interaction on strain and to the temperature evolution of the graphene Raman spectra are discussed. Finally, the relation between mechanical and thermal properties is presented along with the characterization of thermal properties of graphene with Raman spectroscopy.Comment: To appear in the Journal of Materials Scienc
    • …
    corecore