210 research outputs found
Penetration of alkali atoms throughout graphene membrane: theoretical modeling
Theoretical studies of penetration of various alkali atoms (Li, Na, Rb, Cs)
throughout graphene membrane grown on silicon carbide substrate are reported
and compared with recent experimental results. Results of first principles
modeling demonstrate rather low (about 0.8 eV) energy barrier for the formation
of temporary defects in carbon layer required for the penetration of Li at high
concentration of adatoms, higher (about 2 eV) barrier for Na, and barriers
above 4 eV for Rb and Cs. Experiments prove migration of lithium adatoms from
graphene surface to the buffer layer and SiC substrate at room temperature,
sodium at 100{\deg}C and impenetrability of graphene membrane for Rb and Cs.
Differences between epitaxial and free standing graphene for the penetration of
alkali ions are also discussed.Comment: 16 pages, 3 figure, accepted to Nanoscal
Low thermal resistance of a GaN-on-SiC transistor structure with improved structural properties at the interface
The crystalline quality of AlGaN/GaN heterostructures was improved by optimization of surface pretreatment of the SiC substrate in a hot-wall metal-organic chemical vapor deposition reactor. X-ray photoelectron spectroscopy measurements revealed that oxygen- and carbon-related contaminants were still present on the SiC surface treated at 1200 \ub0C in H2 ambience, which hinders growth of thin AlN nucleation layers with high crystalline quality. As the H2 pretreatment temperature increased to 1240 \ub0C, the crystalline quality of the 105 nm thick AlN nucleation layers in the studied series reached an optimal value in terms of full width at half-maximum of the rocking curves of the (002) and (105) peaks of 64 and 447 arcsec, respectively. The improvement of the AlN growth also consequently facilitated a growth of the GaN buffer layers with high crystalline quality. The rocking curves of the GaN (002) and (102) peaks were thus improved from 209 and 276 arcsec to 149 and 194 arcsec, respectively. In addition to a correlation between the thermal resistance and the structural quality of an AlN nucleation layer, we found that the microstructural disorder of the SiC surface and the morphological defects of the AlN nucleation layers to be responsible for a substantial thermal resistance. Moreover, in order to decrease the thermal resistance in the GaN/SiC interfacial region, the thickness of the AlN nucleation layer was then reduced to 35 nm, which was shown sufficient to grow AlGaN/GaN heterostructures with high crystalline quality. Finally, with the 35 nm thick high-quality AlN nucleation layer a record low thermal boundary resistance of 1.3
710-8 m2 K/W, measured at an elevated temperature of 160 \ub0C, in a GaN-on-SiC transistor structure was achieved
Directed self-organization of graphene nanoribbons on SiC
Realization of post-CMOS graphene electronics requires production of
semiconducting graphene, which has been a labor-intensive process. We present
tailoring of silicon carbide crystals via conventional photolithography and
microelectronics processing to enable templated graphene growth on
4H-SiC{1-10n} (n = 8) crystal facets rather than the customary {0001} planes.
This allows self-organized growth of graphene nanoribbons with dimensions
defined by those of the facet. Preferential growth is confirmed by Raman
spectroscopy and high-resolution transmission electron microscopy (HRTEM)
measurements, and electrical characterization of prototypic graphene devices is
presented. Fabrication of > 10,000 top-gated graphene transistors on a 0.24 cm2
SiC chip demonstrates scalability of this process and represents the highest
density of graphene devices reported to date.Comment: 13 pages, 5 figure
CO2 Laser-Induced Growth of Epitaxial Graphene on 6H-SiC(0001)
The thermal decomposition of SiC surface provides, perhaps, the most
promising method for the epitaxial growth of graphene on a material useful in
the electronics platform. Currently, efforts are focused on a reliable method
for the growth of large-area, low-strain epitaxial graphene that is still
lacking. We report here a novel method for the fast, single-step epitaxial
growth of large-area homogeneous graphene film on the surface of SiC(0001)
using an infrared CO2 laser (10.6 {\mu}m) as the heating source. Apart from
enabling extreme heating and cooling rates, which can control the stacking
order of epitaxial graphene, this method is cost-effective in that it does not
necessitate SiC pre-treatment and/or high vacuum, it operates at low
temperature and proceeds in the second time scale, thus providing a green
solution to EG fabrication and a means to engineering graphene patterns on SiC
by focused laser beams. Uniform, low-strain graphene film is demonstrated by
scanning electron microscopy and x-ray photoelectron, secondary ion mass, and
Raman spectroscopies. Scalability to industrial level of the method described
here appears to be realistic, in view of the high rate of CO2-laser induced
graphene growth and the lack of strict sample-environment conditions.Comment: 32 pages, 5 figures, includes Supporting Informatio
Surface Chemistry Involved in Epitaxy of Graphene on 3C-SiC(111)/Si(111)
Surface chemistry involved in the epitaxy of graphene by sublimating Si atoms from the surface of epitaxial 3C-SiC(111) thin films on Si(111) has been studied. The change in the surface composition during graphene epitaxy is monitored by in situ temperature-programmed desorption spectroscopy using deuterium as a probe (D2-TPD) and complementarily by ex situ Raman and C1s core-level spectroscopies. The surface of the 3C-SiC(111)/Si(111) is Si-terminated before the graphitization, and it becomes C-terminated via the formation of C-rich (6√3 × 6√3)R30° reconstruction as the graphitization proceeds, in a similar manner as the epitaxy of graphene on Si-terminated 6H-SiC(0001) proceeds
Probing Mechanical Properties of Graphene with Raman Spectroscopy
The use of Raman scattering techniques to study the mechanical properties of
graphene films is reviewed here. The determination of Gruneisen parameters of
suspended graphene sheets under uni- and bi-axial strain is discussed and the
values are compared to theoretical predictions. The effects of the
graphene-substrate interaction on strain and to the temperature evolution of
the graphene Raman spectra are discussed. Finally, the relation between
mechanical and thermal properties is presented along with the characterization
of thermal properties of graphene with Raman spectroscopy.Comment: To appear in the Journal of Materials Scienc
- …