24 research outputs found

    Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria

    Get PDF
    The association of arbuscular mycorrhizal (AM) fungi with plant roots is the oldest and ecologically most important symbiotic relationship between higher plants and microorganisms, yet the mechanism by which these fungi detect the presence of a plant host is poorly understood. Previous studies have shown that roots secrete a branching factor (BF) that strongly stimulates branching of hyphae during germination of the spores of AM fungi. In the BF of Lotus, a strigolactone was found to be the active molecule. Strigolactones are known as germination stimulants of the parasitic plants Striga and Orobanche. In this paper, we show that the BF of a monocotyledonous plant, Sorghum, also contains a strigolactone. Strigolactones strongly and rapidly stimulated cell proliferation of the AM fungus Gigaspora rosea at concentrations as low as 10 (−13) M. This effect was not found with other sesquiterperne lactones known as germination stimulants of parasitic weeds. Within 1 h of treatment, the density of mitochondria in the fungal cells increased, and their shape and movement changed dramatically. Strigolactones stimulated spore germination of two other phylogenetically distant AM fungi, Glomus intraradices and Gl. claroideum. This was also associated with a rapid increase of mitochondrial density and respiration as shown with Gl. intraradices. We conclude that strigolactones are important rhizospheric plant signals involved in stimulating both the pre-symbiotic growth of AM fungi and the germination of parasitic plants

    The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events

    Get PDF
    Most plants form root symbioses with arbuscular mycorrhizal (AM) fungi, which provide them with phosphate and other nutrients. High soil phosphate levels are known to affect AM symbiosis negatively, but the underlying mechanisms are not understood. This report describes experimental conditions which triggered a novel mycorrhizal phenotype under high phosphate supply: the interaction between pea and two different AM fungi was almost completely abolished at a very early stage, prior to the formation of hyphopodia. As demonstrated by split-root experiments, down-regulation of AM symbiosis occurred at least partly in response to plant-derived signals. Early signalling events were examined with a focus on strigolactones, compounds which stimulate pre-symbiotic fungal growth and metabolism. Strigolactones were also recently identified as novel plant hormones contributing to the control of shoot branching. Root exudates of plants grown under high phosphate lost their ability to stimulate AM fungi and lacked strigolactones. In addition, a systemic down-regulation of strigolactone release by high phosphate supply was demonstrated using split-root systems. Nevertheless, supplementation with exogenous strigolactones failed to restore root colonization under high phosphate. This observation does not exclude a contribution of strigolactones to the regulation of AM symbiosis by phosphate, but indicates that they are not the only factor involved. Together, the results suggest the existence of additional early signals that may control the differentiation of hyphopodia

    Modification of Early Response of Vitis vinifera to Pathogens Relating to Esca Disease and Biocontrol Agent VintecÂź Revealed By Untargeted Metabolomics on Woody Tissues

    No full text
    International audienceEsca disease is one of the most destructive grapevine trunk diseases. Phaeoacremonium minimum and Phaeomoniella chlamydospora are two of the known fungal pathogens associated with this disease. Today, biocontrol agents against Esca are mainly based on the use of the strain of the mycoparasite fungal genus Trichoderma such as the Vintec ¼ product. The aim of this study was to investigate early response of woody tissues to Esca pathogens and identify metabolites that could be correlated with a biocontrol activity within a complex woody matrix. An untargeted liquid chromatography–high-resolution mass spectrometry metabolomic approach coupled to a spectral similarity network was used to highlight clusters of compounds associated with the plant response to pathogens and biocontrol. Dereplication highlighted the possible role of glycerophospholipids and polyphenol compounds, the latest mainly belonging to stilbenoids. Antifungal activity of some relevant biomarkers, evaluated in vitro on Phaeomoniella chlamydospora and Botrytis cinerea , suggests that some of these compounds can play a role to limit the development of Esca pathogens in planta

    Combining Metabolomics and Gene Expression Analysis Reveals that Propionyl- and Butyryl-Carnitines Are Involved in Late Stages of Arbuscular Mycorrhizal Symbiosis

    No full text
    International audienceThe arbuscular mycorrhizal (AM) symbiosis is a widespread mutualistic association between soil fungi (Glomeromycota) and the roots of most plant species. AM fungi are obligate biotrophs whose development is partially under the control of their plant host. We explored the possibility to combine metabolomic and transcriptomic approaches to find putative mycorrhiza-associated metabolites regulating AM fungal development. Methanol extracts of Medicago truncatula roots colonized or not with the AM fungus Rhizophagus irregularis were analyzed and compared by ultra-high-performance liquid chromatography (UHPLC), high-resolution mass spectrometry (Q-TOF), and multivariate statistical discrimination. We detected 71 mycorrhiza-associated analytes exclusively present or at least 10-fold more abundant in mycorrhizal roots. To identify among these analytes those that could regulate AM fungal development, we fractionated by preparative and semi-preparative HPLC the mycorrhizal and non-mycorrhizal root extracts and established how the 71 analytes were distributed among the fractions. Then we tested the activity of the fractions on germinating spores of R. irregularis by quantifying the expression of 96 genes known for their diverse in planta expression patterns. These investigations reveal that propionyl- and butyryl-carnitines accumulated in mycorrhizal roots. The results suggest that these two molecules regulate fungal gene expression in planta and represent interesting candidates for further biological characterization

    Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis.

    No full text
    Arbuscular mycorrhizal symbiosis is a mutualistic interaction between most land plants and fungi of the glomeromycotina subphylum. The initiation, development and regulation of this symbiosis involve numerous signalling events between and within the symbiotic partners. Among other signals, phytohormones are known to play important roles at various stages of the interaction. During presymbiotic steps, plant roots exude strigolactones which stimulate fungal spore germination and hyphal branching, and promote the initiation of symbiosis. At later stages, different plant hormone classes can act as positive or negative regulators of the interaction. Although the fungus is known to reciprocally emit regulatory signals, its potential contribution to the phytohormonal pool has received little attention, and has so far only been addressed by indirect assays. In this study, using mass spectrometry, we analyzed phytohormones released into the medium by germinated spores of the arbuscular mycorrhizal fungus Rhizophagus irregularis. We detected the presence of a cytokinin (isopentenyl adenosine) and an auxin (indole-acetic acid). In addition, we identified a gibberellin (gibberellin A4) in spore extracts. We also used gas chromatography to show that R. irregularis produces ethylene from methionine and the α-keto γ-methylthio butyric acid pathway. These results highlight the possibility for AM fungi to use phytohormones to interact with their host plants, or to regulate their own development

    MS-CleanR: A Feature-Filtering Workflow for Untargeted LC–MS Based Metabolomics

    No full text
    International audienceUntargeted metabolomics using liquid chromatography–mass spectrometry (LC–MS) is currently the gold-standard technique to determine the full chemical diversity in biological samples. However, this approach still has many limitations; notably, the difficulty of accurately estimating the number of unique metabolites profiled among the thousands of MS ion signals arising from chromatograms. Here, we describe a new workflow, MS-CleanR, based on the MS-DIAL/MS-FINDER suite, which tackles feature degeneracy and improves annotation rates. We show that implementation of MS-CleanR reduces the number of signals by nearly 80% while retaining 95% of unique metabolite features. Moreover, the annotation results from MS-FINDER can be ranked according to the database chosen by the user, which enhance identification accuracy. Application of MS-CleanR to the analysis of Arabidopsis thaliana grown in three different conditions fostered class separation resulting from multivariate data analysis and led to annotation of 75% of the final features. The full workflow was applied to metabolomic profiles from three strains of the leguminous plant Medicago truncatula that have different susceptibilities to the oomycete pathogen Aphanomyces euteiches. A group of glycosylated triterpenoids overrepresented in resistant lines were identified as candidate compounds conferring pathogen resistance. MS-CleanR is implemented through a Shiny interface for intuitive use by end-users (available at https://github.com/eMetaboHUB/MS-CleanR)
    corecore