35 research outputs found

    Molars and incisors: show your microarray IDs.

    Get PDF
    BACKGROUND: One of the key questions in developmental biology is how, from a relatively small number of conserved signaling pathways, is it possible to generate organs displaying a wide range of shapes, tissue organization, and function. The dentition and its distinct specific tooth types represent a valuable system to address the issues of differential molecular signatures. To identify such signatures, we performed a comparative transcriptomic analysis of developing murine lower incisors, mandibular molars and maxillary molars at the developmental cap stage (E14.5). RESULTS: 231 genes were identified as being differentially expressed between mandibular incisors and molars, with a fold change higher than 2 and a false discovery rate lower than 0.1, whereas only 96 genes were discovered as being differentially expressed between mandibular and maxillary molars. Numerous genes belonging to specific signaling pathways (the Hedgehog, Notch, Wnt, FGF, TGFβ/BMP, and retinoic acid pathways), and/or to the homeobox gene superfamily, were also uncovered when a less stringent fold change threshold was used. Differential expressions for 10 out of 12 (mandibular incisors versus molars) and 9 out of 10 selected genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of incisor versus molar differentially expressed genes revealed that 143 genes belonged to 9 networks with intermolecular connections. Networks with the highest significance scores were centered on the TNF/NFκB complex and the ERK1/2 kinases. Two networks ERK1/2 kinases and tretinoin were involved in differential molar morphogenesis. CONCLUSION: These data allowed us to build several regulatory networks that may distinguish incisor versus molar identity, and may be useful for further investigations of these tooth-specific ontogenetic programs. These programs may be dysregulated in transgenic animal models and related human diseases leading to dental anomalies.journal articleresearch support, non-u.s. gov't2013 Mar 262013 03 26importe

    A New SLC10A7 Homozygous Missense Mutation Responsible for a Milder Phenotype of Skeletal Dysplasia With Amelogenesis Imperfecta

    Get PDF
    International audienceAmelogenesis imperfecta (AI) is a heterogeneous group of rare inherited diseases presenting with enamel defects. More than 30 genes have been reported to be involved in syndromic or non-syndromic AI and new genes are continuously discovered (Smith et al., 2017). Whole-exome sequencing was performed in a consanguineous family. The affected daughter presented with intra-uterine and postnatal growth retardation, skeletal dysplasia, macrocephaly, blue sclerae, and hypoplastic AI. We identified a homozygous missense mutation in exon 11 of SLC10A7 (NM_001300842.2: c.908C>T; p.Pro303Leu) segregating with the disease phenotype. We found that Slc10a7 transcripts were expressed in the epithelium of the developing mouse tooth, bones undergoing ossification, and in vertebrae. Our results revealed that SLC10A7 is overexpressed in patient fibroblasts. Patient cells display altered intracellular calcium localization suggesting that SLC10A7 regulates calcium trafficking. Mutations in this gene were previously reported to cause a similar syndromic phenotype, but with more severe skeletal defects (Ashikov et al., 2018;Dubail et al., 2018). Therefore, phenotypes resulting from a mutation in SLC10A7 can vary in severity. However, AI is the key feature indicative of SLC10A7 mutations in patients with skeletal dysplasia. Identifying this important phenotype will improve clinical diagnosis and patient management

    Retinoic Acid Excess Impairs Amelogenesis Inducing Enamel Defects.

    Get PDF
    Abnormalities of enamel matrix proteins deposition, mineralization, or degradation during tooth development are responsible for a spectrum of either genetic diseases termed Amelogenesis imperfecta or acquired enamel defects. To assess if environmental/nutritional factors can exacerbate enamel defects, we investigated the role of the active form of vitamin A, retinoic acid (RA). Robust expression of RA-degrading enzymes Cyp26b1 and Cyp26c1 in developing murine teeth suggested RA excess would reduce tooth hard tissue mineralization, adversely affecting enamel. We employed a protocol where RA was supplied to pregnant mice as a food supplement, at a concentration estimated to result in moderate elevations in serum RA levels. This supplementation led to severe enamel defects in adult mice born from pregnant dams, with most severe alterations observed for treatments from embryonic day (E)12.5 to E16.5. We identified the enamel matrix proteins enamelin (Enam), ameloblastin (Ambn), and odontogenic ameloblast-associated protein (Odam) as target genes affected by excess RA, exhibiting mRNA reductions of over 20-fold in lower incisors at E16.5. RA treatments also affected bone formation, reducing mineralization. Accordingly, craniofacial ossification was drastically reduced after 2 days of treatment (E14.5). Massive RNA-sequencing (RNA-seq) was performed on E14.5 and E16.5 lower incisors. Reductions in Runx2 (a key transcriptional regulator of bone and enamel differentiation) and its targets were observed at E14.5 in RA-exposed embryos. RNA-seq analysis further indicated that bone growth factors, extracellular matrix, and calcium homeostasis were perturbed. Genes mutated in human AI (ENAM, AMBN, AMELX, AMTN, KLK4) were reduced in expression at E16.5. Our observations support a model in which elevated RA signaling at fetal stages affects dental cell lineages. Thereafter enamel protein production is impaired, leading to permanent enamel alterations.journal article20162017 01 06importe

    A New SLC10A7 Homozygous Missense Mutation Responsible for a Milder Phenotype of Skeletal Dysplasia With Amelogenesis Imperfecta

    Get PDF
    Amelogenesis imperfecta (AI) is a heterogeneous group of rare inherited diseases presenting with enamel defects. More than 30 genes have been reported to be involved in syndromic or non-syndromic AI and new genes are continuously discovered (Smith et al., 2017). Whole-exome sequencing was performed in a consanguineous family. The affected daughter presented with intra-uterine and postnatal growth retardation, skeletal dysplasia, macrocephaly, blue sclerae, and hypoplastic AI. We identified a homozygous missense mutation in exon 11 of SLC10A7 (NM_001300842.2: c.908C>T; p.Pro303Leu) segregating with the disease phenotype. We found that Slc10a7 transcripts were expressed in the epithelium of the developing mouse tooth, bones undergoing ossification, and in vertebrae. Our results revealed that SLC10A7 is overexpressed in patient fibroblasts. Patient cells display altered intracellular calcium localization suggesting that SLC10A7 regulates calcium trafficking. Mutations in this gene were previously reported to cause a similar syndromic phenotype, but with more severe skeletal defects (Ashikov et al., 2018;Dubail et al., 2018). Therefore, phenotypes resulting from a mutation in SLC10A7 can vary in severity. However, AI is the key feature indicative of SLC10A7 mutations in patients with skeletal dysplasia. Identifying this important phenotype will improve clinical diagnosis and patient management

    A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement.

    Get PDF
    BACKGROUND: Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. METHODS: We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. RESULTS: We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. CONCLUSIONS: We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. TRIAL REGISTRATION NUMBERS: NCT01746121 and NCT02397824.journal articleresearch support, non-u.s. gov't2016 Feb2015 10 26importe

    Development of the oral cavity : from gene to clinical phenotype in human

    No full text
    L’odontogenèse est sous contrôle génétique strict et elle est contrôlée par des interactions épithelio-mésenchymateuses. Les anomalies bucco-dentaires sont un des signes cliniques des syndromes. Parmi 7000 syndromes connus 900 ont un phénotype oral. Ce travail combine l’étude de modèles animaux et la bioinformatique pour améliorer la compréhension des mécanismes étiopathogéniques impliqués dans le développement dentaire.Méthodes :(1)Sélection de gènes impliqués dans des syndromes dont l’expression n’est pas caractérisée ; (2)Identification de gènes candidats par analyse de leur expression crânio-faciale et dentaire (atlas de transcriptome EURExpress) ; (3)Sélection de gènes différenciellement exprimés entre molaires et incisives et entre molaires mandibulaires et maxillaires au stade E14.5 par analyse transcriptomique ; (4)Etude par microtomodensitométrie des malformations crânio-faciales et bucco-dentaires des souris Rsk2-/Y (modèle du syndrome de Coffin-Lowry). Résultats : (1)Patrons d’expression au cours du développement dentaire pour 13 gènes ; (2)Patrons d’expression pour 4 gènes (3)88 gènes différenciellement exprimés entre molaires mandibulaires et incisives et 53 entre molaires mandibulaires et maxillaires (4)Taille réduite des mutants, déviation nasale et présence de dents surnuméraires. Conclusion : Ce projet fédère des scientifiques et des cliniciens autour de la compréhension des anomalies bucco-dentaires afin de stimuler le diagnostic de ces troubles du développement en se basant sur des preuves scientifiques et de proposer de nouvelles options thérapeutiques.Tooth development is under strict genetic control and is mediated by epithelio-mesenchymal interactions. Oro-dental anomalies are one aspect of the 7000 known syndromes and 900 of these have an oral phenotype. Our goal is to combine the study of animal models and bioinformatics to improve the understanding of etiopathogenic mechanisms involved in oral development. Methods: (1)Selection of known genes responsible for syndromes but for which the expression and/or roles are not characterised ; (2)Identification of new candidate genes, through an analysis of their craniofacial and dental expression patterns using the EURExpress mouse transcriptome-wide atlas ; (3)Selection of genes differentially expressed between molars and incisors and between mandibular and maxillary molars at E14.5 by transcriptomic analysis ; (4)Study of craniofacial and orodental malformations of Rsk2-/Y mice by microtomodensitometry (model of Coffin-Lowry syndrome) Results: (1)Expression pattern during odontogenesis for 13 genes ; (2)Expression pattern for 4 genes (3)88 gènes différentially expressed between molars and incisors and 53 between mandibular and maxillary molars (4)Smaller mutants, nasal deviation and supplementary teeth. Conclusion: This project federates scientists and clinicians around the understanding of orodental anomalies and should stimulate the implementation of science based evidence diagnosis and new therapeutic options

    Développement de la cavité buccale : du gène à l'expression clinique chez l'Homme

    No full text
    Tooth development is under strict genetic control and is mediated by epithelio-mesenchymal interactions. Oro-dental anomalies are one aspect of the 7000 known syndromes and 900 of these have an oral phenotype. Our goal is to combine the study of animal models and bioinformatics to improve the understanding of etiopathogenic mechanisms involved in oral development. Methods: (1)Selection of known genes responsible for syndromes but for which the expression and/or roles are not characterised ; (2)Identification of new candidate genes, through an analysis of their craniofacial and dental expression patterns using the EURExpress mouse transcriptome-wide atlas ; (3)Selection of genes differentially expressed between molars and incisors and between mandibular and maxillary molars at E14.5 by transcriptomic analysis ; (4)Study of craniofacial and orodental malformations of Rsk2-/Y mice by microtomodensitometry (model of Coffin-Lowry syndrome) Results: (1)Expression pattern during odontogenesis for 13 genes ; (2)Expression pattern for 4 genes (3)88 gènes différentially expressed between molars and incisors and 53 between mandibular and maxillary molars (4)Smaller mutants, nasal deviation and supplementary teeth. Conclusion: This project federates scientists and clinicians around the understanding of orodental anomalies and should stimulate the implementation of science based evidence diagnosis and new therapeutic options.L’odontogenèse est sous contrôle génétique strict et elle est contrôlée par des interactions épithelio-mésenchymateuses. Les anomalies bucco-dentaires sont un des signes cliniques des syndromes. Parmi 7000 syndromes connus 900 ont un phénotype oral. Ce travail combine l’étude de modèles animaux et la bioinformatique pour améliorer la compréhension des mécanismes étiopathogéniques impliqués dans le développement dentaire.Méthodes :(1)Sélection de gènes impliqués dans des syndromes dont l’expression n’est pas caractérisée ; (2)Identification de gènes candidats par analyse de leur expression crânio-faciale et dentaire (atlas de transcriptome EURExpress) ; (3)Sélection de gènes différenciellement exprimés entre molaires et incisives et entre molaires mandibulaires et maxillaires au stade E14.5 par analyse transcriptomique ; (4)Etude par microtomodensitométrie des malformations crânio-faciales et bucco-dentaires des souris Rsk2-/Y (modèle du syndrome de Coffin-Lowry). Résultats : (1)Patrons d’expression au cours du développement dentaire pour 13 gènes ; (2)Patrons d’expression pour 4 gènes (3)88 gènes différenciellement exprimés entre molaires mandibulaires et incisives et 53 entre molaires mandibulaires et maxillaires (4)Taille réduite des mutants, déviation nasale et présence de dents surnuméraires. Conclusion : Ce projet fédère des scientifiques et des cliniciens autour de la compréhension des anomalies bucco-dentaires afin de stimuler le diagnostic de ces troubles du développement en se basant sur des preuves scientifiques et de proposer de nouvelles options thérapeutiques

    Development of the oral cavity : from gene to clinical phenotype in human

    No full text
    L’odontogenèse est sous contrôle génétique strict et elle est contrôlée par des interactions épithelio-mésenchymateuses. Les anomalies bucco-dentaires sont un des signes cliniques des syndromes. Parmi 7000 syndromes connus 900 ont un phénotype oral. Ce travail combine l’étude de modèles animaux et la bioinformatique pour améliorer la compréhension des mécanismes étiopathogéniques impliqués dans le développement dentaire.Méthodes :(1)Sélection de gènes impliqués dans des syndromes dont l’expression n’est pas caractérisée ; (2)Identification de gènes candidats par analyse de leur expression crânio-faciale et dentaire (atlas de transcriptome EURExpress) ; (3)Sélection de gènes différenciellement exprimés entre molaires et incisives et entre molaires mandibulaires et maxillaires au stade E14.5 par analyse transcriptomique ; (4)Etude par microtomodensitométrie des malformations crânio-faciales et bucco-dentaires des souris Rsk2-/Y (modèle du syndrome de Coffin-Lowry). Résultats : (1)Patrons d’expression au cours du développement dentaire pour 13 gènes ; (2)Patrons d’expression pour 4 gènes (3)88 gènes différenciellement exprimés entre molaires mandibulaires et incisives et 53 entre molaires mandibulaires et maxillaires (4)Taille réduite des mutants, déviation nasale et présence de dents surnuméraires. Conclusion : Ce projet fédère des scientifiques et des cliniciens autour de la compréhension des anomalies bucco-dentaires afin de stimuler le diagnostic de ces troubles du développement en se basant sur des preuves scientifiques et de proposer de nouvelles options thérapeutiques.Tooth development is under strict genetic control and is mediated by epithelio-mesenchymal interactions. Oro-dental anomalies are one aspect of the 7000 known syndromes and 900 of these have an oral phenotype. Our goal is to combine the study of animal models and bioinformatics to improve the understanding of etiopathogenic mechanisms involved in oral development. Methods: (1)Selection of known genes responsible for syndromes but for which the expression and/or roles are not characterised ; (2)Identification of new candidate genes, through an analysis of their craniofacial and dental expression patterns using the EURExpress mouse transcriptome-wide atlas ; (3)Selection of genes differentially expressed between molars and incisors and between mandibular and maxillary molars at E14.5 by transcriptomic analysis ; (4)Study of craniofacial and orodental malformations of Rsk2-/Y mice by microtomodensitometry (model of Coffin-Lowry syndrome) Results: (1)Expression pattern during odontogenesis for 13 genes ; (2)Expression pattern for 4 genes (3)88 gènes différentially expressed between molars and incisors and 53 between mandibular and maxillary molars (4)Smaller mutants, nasal deviation and supplementary teeth. Conclusion: This project federates scientists and clinicians around the understanding of orodental anomalies and should stimulate the implementation of science based evidence diagnosis and new therapeutic options

    Développement de la cavité buccale (du gène à l'expression clinique chez l'Homme)

    No full text
    L odontogenèse est sous contrôle génétique strict et elle est contrôlée par des interactions épithelio-mésenchymateuses. Les anomalies bucco-dentaires sont un des signes cliniques des syndromes. Parmi 7000 syndromes connus 900 ont un phénotype oral. Ce travail combine l étude de modèles animaux et la bioinformatique pour améliorer la compréhension des mécanismes étiopathogéniques impliqués dans le développement dentaire.Méthodes :(1)Sélection de gènes impliqués dans des syndromes dont l expression n est pas caractérisée ; (2)Identification de gènes candidats par analyse de leur expression crânio-faciale et dentaire (atlas de transcriptome EURExpress) ; (3)Sélection de gènes différenciellement exprimés entre molaires et incisives et entre molaires mandibulaires et maxillaires au stade E14.5 par analyse transcriptomique ; (4)Etude par microtomodensitométrie des malformations crânio-faciales et bucco-dentaires des souris Rsk2-/Y (modèle du syndrome de Coffin-Lowry). Résultats : (1)Patrons d expression au cours du développement dentaire pour 13 gènes ; (2)Patrons d expression pour 4 gènes (3)88 gènes différenciellement exprimés entre molaires mandibulaires et incisives et 53 entre molaires mandibulaires et maxillaires (4)Taille réduite des mutants, déviation nasale et présence de dents surnuméraires. Conclusion : Ce projet fédère des scientifiques et des cliniciens autour de la compréhension des anomalies bucco-dentaires afin de stimuler le diagnostic de ces troubles du développement en se basant sur des preuves scientifiques et de proposer de nouvelles options thérapeutiques.Tooth development is under strict genetic control and is mediated by epithelio-mesenchymal interactions. Oro-dental anomalies are one aspect of the 7000 known syndromes and 900 of these have an oral phenotype. Our goal is to combine the study of animal models and bioinformatics to improve the understanding of etiopathogenic mechanisms involved in oral development. Methods: (1)Selection of known genes responsible for syndromes but for which the expression and/or roles are not characterised ; (2)Identification of new candidate genes, through an analysis of their craniofacial and dental expression patterns using the EURExpress mouse transcriptome-wide atlas ; (3)Selection of genes differentially expressed between molars and incisors and between mandibular and maxillary molars at E14.5 by transcriptomic analysis ; (4)Study of craniofacial and orodental malformations of Rsk2-/Y mice by microtomodensitometry (model of Coffin-Lowry syndrome) Results: (1)Expression pattern during odontogenesis for 13 genes ; (2)Expression pattern for 4 genes (3)88 gènes différentially expressed between molars and incisors and 53 between mandibular and maxillary molars (4)Smaller mutants, nasal deviation and supplementary teeth. Conclusion: This project federates scientists and clinicians around the understanding of orodental anomalies and should stimulate the implementation of science based evidence diagnosis and new therapeutic options.STRASBOURG-Bib.electronique 063 (674829902) / SudocSudocFranceF

    Retinoic Acid Excess Impairs Amelogenesis Inducing Enamel Defects.

    Get PDF
    Abnormalities of enamel matrix proteins deposition, mineralization, or degradation during tooth development are responsible for a spectrum of either genetic diseases termed Amelogenesis imperfecta or acquired enamel defects. To assess if environmental/nutritional factors can exacerbate enamel defects, we investigated the role of the active form of vitamin A, retinoic acid (RA). Robust expression of RA-degrading enzymes Cyp26b1 and Cyp26c1 in developing murine teeth suggested RA excess would reduce tooth hard tissue mineralization, adversely affecting enamel. We employed a protocol where RA was supplied to pregnant mice as a food supplement, at a concentration estimated to result in moderate elevations in serum RA levels. This supplementation led to severe enamel defects in adult mice born from pregnant dams, with most severe alterations observed for treatments from embryonic day (E)12.5 to E16.5. We identified the enamel matrix proteins enamelin (Enam), ameloblastin (Ambn), and odontogenic ameloblast-associated protein (Odam) as target genes affected by excess RA, exhibiting mRNA reductions of over 20-fold in lower incisors at E16.5. RA treatments also affected bone formation, reducing mineralization. Accordingly, craniofacial ossification was drastically reduced after 2 days of treatment (E14.5). Massive RNA-sequencing (RNA-seq) was performed on E14.5 and E16.5 lower incisors. Reductions in Runx2 (a key transcriptional regulator of bone and enamel differentiation) and its targets were observed at E14.5 in RA-exposed embryos. RNA-seq analysis further indicated that bone growth factors, extracellular matrix, and calcium homeostasis were perturbed. Genes mutated in human AI (ENAM, AMBN, AMELX, AMTN, KLK4) were reduced in expression at E16.5. Our observations support a model in which elevated RA signaling at fetal stages affects dental cell lineages. Thereafter enamel protein production is impaired, leading to permanent enamel alterations
    corecore