14 research outputs found

    Pectin - Extraction, Purification, Characterization and Applications

    Get PDF
    Fruits, vegetables, and other plant-based foods are particularly important as they are source of dietary carbohydrates, and therefore much of the energy in the adult diet. Plant food also contains a wide range of dietary components rich in bioactive phytochemicals and is essential to the human body that may provide desirable health benefits beyond basic nutrition. Pectin is one of the nonstarch polysaccharides (NSPs), which constitutes the major fraction of the plant cell wall in association and/or substituted with other polysaccharides, and they cover a great variety of biological functions and chemical structures. Generally, pectin is isolated from by-products of agro-foods using extraction technologies with the emergence of novel and effective techniques that inclined toward a cleaner process. Pectin is widely used both in food sector (as gelling, thickening, and stabilizer agent) and in pharmaceutical industries (bioactive components) including biomedical application (drug delivery, tissue engineering, and wound healing) as innovative applications

    Pectin - Extraction, Purification, Characterization and Applications

    Get PDF
    Fruits, vegetables, and other plant-based foods are particularly important as they are source of dietary carbohydrates, and therefore much of the energy in the adult diet. Plant food also contains a wide range of dietary components rich in bioactive phytochemicals and is essential to the human body that may provide desirable health benefits beyond basic nutrition. Pectin is one of the nonstarch polysaccharides (NSPs), which constitutes the major fraction of the plant cell wall in association and/or substituted with other polysaccharides, and they cover a great variety of biological functions and chemical structures. Generally, pectin is isolated from by-products of agro-foods using extraction technologies with the emergence of novel and effective techniques that inclined toward a cleaner process. Pectin is widely used both in food sector (as gelling, thickening, and stabilizer agent) and in pharmaceutical industries (bioactive components) including biomedical application (drug delivery, tissue engineering, and wound healing) as innovative applications

    Factors Involved in the Functional Motor Recovery of Rats with Cortical Ablation after GH and Rehabilitation Treatment: Cortical Cell Proliferation and Nestin and Actin Expression in the Striatum and Thalamus

    Get PDF
    Previously we demonstrated, in rats, that treatment with growth hormone (GH) and rehabilitation, carried out immediately after a motor cortical ablation, significantly improved the motor affectation produced by the lesion and induced the re-expression of nestin in the contralateral motor cortex. Here we analyze cortical proliferation after ablation of the frontal motor cortex and investigate the re-expression of nestin in the contralateral motor cortex and the role of the striatum and thalamus in motor recovery. The rats were subjected to ablation of the frontal motor cortex in the dominant hemisphere or sham-operated and immediately treated with GH or the vehicle (V), for five days. At 1 dpi (days post-injury), all rats received daily injections (for four days) of bromodeoxyuridine and five rats were sacrificed at 5 dpi. The other 15 rats (n = 5/group) underwent rehabilitation and were sacrificed at 25 dpi. GH induced the greatest number of proliferating cells in the perilesional cortex. GH and rehabilitation produced the functional recovery of the motor lesion and increased the expression of nestin in the striatum. In the thalamic ventral nucleus ipsilateral to the lesion, cells positive for nestin and actin were detected, but this was independent on GH. Our data suggest that GH-induced striatal nestin is involved in motor recoveryThis research was funded by Foundation Foltra (Teo, Spain), grant number 2018-8S

    Pressurized Extraction as an Opportunity to Recover Antioxidants from Orange Peels: Heat treatment and Nanoemulsion Design for Modulating Oxidative Stress

    Get PDF
    Orange peel by-products generated in the food industry are an important source of value added compounds that can be potentially reused. In the current research, the effect of oven-drying (50–70 ◦C) and freeze-drying on the bioactive compounds and antioxidant potential from Navelina, Salustriana, and Sanguina peel waste was investigated using pressurized extraction (ASE). Sixty volatile components were identified by ASE-GC-MS. The levels of terpene derivatives (sesquitenenes, alcohols, aldehydes, hydrocarbons, and esters) remained practically unaffected among fresh and freeze-dried orange peels, whereas drying at 70 ◦C caused significative decreases in Navelina, Salustri ana, and Sanguina peels. Hesperidin and narirutin were the main flavonoids quantified by HPLC-MS. Freeze-dried Sanguina peels showed the highest levels of total-polyphenols (113.3 mg GAE·g −1 ), total flavonoids (39.0 mg QE·g −1 ), outstanding values of hesperedin (187.6 µg·g −1 ), phenol acids (16.54 mg·g −1 DW), and the greatest antioxidant values (DPPH•, FRAP, and ABTS•+ assays) in comparison with oven-dried samples and the other varieties. Nanotechnology approaches allowed the formulation of antioxidant-loaded nanoemulsions, stabilized with lecithin, starting from orange peel extracts. Those provided 70–80% of protection against oxidative UV-radiation, also decreasing the ROS levels into the Caco-2 cells. Overall, pressurized extracts from freeze-drying orange peel can be considered a good source of natural antioxidants that could be exploited in food applications for the development of new products of commercial interest

    Neuroprotective Natural Molecules, From Food to Brain

    Get PDF
    The prevalence of neurodegenerative disorders is increasing; however, an effective neuroprotective treatment is still remaining. Nutrition plays an important role in neuroprotection as recently shown by epidemiological and biochemical studies which identified food components as promising therapeutic agents. Neuroprotection includes mechanisms such as activation of specific receptors, changes in enzymatic neuronal activity, and synthesis and secretion of different bioactive molecules. All these mechanisms are focused on preventing neuronal damage and alleviating the consequences of massive cell loss. Some neuropathological disorders selectively affect to particular neuronal populations, thus is important to know their neurochemical and anatomical properties in order to design effective therapies. Although the design of such treatments would be specific to neuronal groups sensible to damage, the effect would have an impact in the whole nervous system. The difficult overcoming of the blood brain barrier has hampered the development of efficient therapies for prevention or protection. This structure is a physical, enzymatic, and influx barrier that efficiently protects the brain from exogenous molecules. Therefore, the development of new strategies, like nanocarriers, that help to promote the access of neuroprotective molecules to the brain, is needed for providing more effective therapies for the disorders of the central nervous system (CNS). In order both to trace the success of these nanoplatforms on the release of the bioactive cargo in the CNS and determinate the concentration at trace levels of targets biomolecules by analytical chemistry and concretely separation instrumental techniques, constitute an essential tool. Currently, these techniques are used for the determination and identification of natural neuroprotective molecules in complex matrixes at different concentration levels. Separation techniques such as chromatography and capillary electrophoresis (CE), using optical and/or mass spectrometry (MS) detectors, provide multiples combinations for the quantitative and qualitative analysis at basal levels or higher concentrations of bioactive analytes in biological samples. Bearing this in mind, the development of food neuroprotective molecules as brain therapeutic agents is a complex task that requires the intimate collaboration and engagement of different disciplines for a successful outcome. In this sense, this work reviews the new advances achieved in the area toward a better understanding of the current state of the art and highlights promising approaches for brain neuroprotection

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    Determination of atrazine and propazine metabolites deemed endocrine disruptors in human seminal plasma by LC–ESI-MS/MS

    No full text
    [Background] The increasing prevalence of male infertility and the declining trend in sperm quality has been associated to compounds known as “endocrine-disruptors”. The proven endocrine-disrupting effects of atrazine and propazine herbicides led us to conduct long-term research based on highly accurate specific analytical methods with a view to confirming the suspected association. Among the proposed developments was a sensitive analytical method for the simultaneous determination of three metabolites of atrazine and propazine.[Results] In this work, the method was for first time used for the chromatographic separation and determination of deethyl- and deisopropyl-atrazine (DEA and DIA, respectively) and propazine-2-hydroxy (PP-2OH) in human seminal plasma by LC–ESI-MS/MS using deuterated atrazine (d5-AT) as internal standard (IS). Chromatographic and mass spectrometric conditions such as the mobile phase composition and flow-rate, injected volume, dry gas source temperature and flow-rate, nebulizer pressure and capillary voltage were all carefully optimized. Analytes were identified and quantified by using the multiple reaction monitoring (MRM) mode as applied to positive ions ([M + H]+). Transitions at three different m/z values for each analyte were selected from precursor ions, and the 212.1 → [128]+, 188.1 → [146]+ and 174.1 → [68.1]+ transitions for PP-2OH, DEA and DIA, respectively, were found to be quantitative. The proposed method was validated in terms of precision (repeatability and reproducibility), linear range (10–240 ng mL–1), limit of detection (150–210 pg mL–1), and quantification (500–700 pg mL–1), recovery, accuracy and matrix effects on extracts from variably treated seminal plasma samples. The overall analytical method was successfully applied to human seminal plasma samples from volunteers. PP-2OH was found at concentrations from 1.10 to 11.3 ng mL–1 in four of the six samples, and so was DIA at 9.60 ng mL–1 in one.[Conclusions] These results are suggestive of bioaccumulation of the target analytes in humans. Untargeted analytes including suspected parent molecules (atrazine and propazine) and other ions [viz., deethyldeisopropyl-atrazine (DD) and diamino-s-chlorotriazine (DACT)] were also detected under the working conditions used. These results may open up new prospects for as yet very incipient research into the bioaccumulation of endocrine disruptors in seminal plasma.The authors thank the financial support given by the 01110AB025 I + D + i research project given by the Diputación de Albacete and was also funded by the financial support given by the University of Castilla–La Mancha, Spain. Ministerio de Ciencia, Innovación y Universidades.Peer reviewe

    On Males, Antioxidants and Infertility (MOXI): Certitudes, Uncertainties and Trends

    No full text
    Male infertility (MI) involves various endogenous and exogenous facts. These include oxidative stress (OS), which is known to alter several physiological pathways and it is estimated to be present at high levels in up to 80% of infertile men. That is why since the late 20th century, the relationship between OS and MI has been widely studied. New terms have emerged, such as Male Oxidative Stress Infertility (MOSI), which is proposed as a new category to define infertile men with high OS levels. Another important term is MOXI: Male, Antioxidants, and Infertility. This term refers to the hypothesis that antioxidants could improve male fertility without the use of assisted reproductive technology. However, there are no evidence-based antioxidant treatments that directly improve seminal parameters or birth ratio. In this regard, there is controversy about their use. While certain scientists argue against their use due to the lack of results, others support this use because of their safety profile and low price. Some uncertainties related to the use of antioxidants for treating MI are their questionable efficacy or the difficulties in knowing their correct dosage. In addition, the lack of quality methods for OS detection can lead to excessive antioxidant supplementation, resulting in “reductive stress”. Another important problem is that, although the inflammatory process is interdependent and closely linked to OS, it is usually ignored. To solve these uncertainties, new trends have recently emerged. These include the use of molecules with anti-inflammatory and antioxidant potential, which are also able to specifically target the reproductive tissue; as well as the use of new methods that allow for reliable quantification of OS and a quality diagnosis. This review aims to elucidate the main uncertainties about MOXI and to outline the latest trends in research to develop effective therapies with clinically relevant outcomes

    Bioactive Flavonoids, Antioxidant Behaviour, and Cytoprotective Effects of Dried Grapefruit Peels ( Citrus paradisi

    No full text
    Grapefruit (Citrus paradisi Macf.) is an important cultivar of the Citrus genus which contains a number of nutrients beneficial to human health. The objective of the present study was to evaluate changes in bioactive flavonoids, antioxidant behaviour, and in vitro cytoprotective effect of processed white and pink peels after oven-drying (45°C–60°C) and freeze-drying treatments. Comparison with fresh grapefruit peels was also assessed. Significant increases in DPPH, FRAPS, and ABTS values were observed in dried grapefruit peel samples in comparison with fresh peels, indicating the suitability of the treatments for use as tools to greatly enhance the antioxidant potential of these natural byproducts. A total of thirteen flavonoids were quantified in grapefruit peel extracts by HPLC-MS/MS. It was found that naringin, followed by isonaringin, was the main flavonoid occurring in fresh, oven-dried, and freeze-dried grapefruit peels. In vivo assay revealed that fresh and oven-dried grapefruit peel extracts (45°C) exerted a strong cytoprotective effect on SH-SY5Y neuroblastoma cell lines at concentrations ranging within 0.1–0.25 mg/mL. Our data suggest that grapefruit (Citrus paradisi Macf.) peel has considerable potential as a source of natural bioactive flavonoids with outstanding antioxidant activity which can be used as agents in several therapeutic strategies

    Vitamin E lipid-based nanodevices as a tool for ovine sperm protection against oxidative stress: Impact on sperm motility

    No full text
    This article belongs to the Special Issue Sperm Oxidative Stress.The advent of nanotechnology in the field of animal reproduction has led to the development of safer and more efficient therapies. The use of nanotechnology allows us to avoid the detrimental effects of certain traditional antioxidants, such as Vitamin E. Its hydrophobic nature makes mandatory the use of organic solvents, which are toxic to sperm cells. This study aims to evaluate the efficiency of vitamin E nanoemulsions (NE) on ram (Ovis aries) spermatozoa. For this purpose, the effect of three NE concentrations (6, 12, and 24 mM) were assessed on sperm of 10 mature rams of the Manchega breed. Sperm samples were collected by artificial vagina, pooled, and diluted in Bovine Gamete Medium. The samples were stored at 37 °C and assessed at 0, 4, 8, and 24 h under oxidative stress conditions (100 µM Fe2+/ascorbate). Motility (CASA), viability (YO-PRO/IP), acrosomal integrity (PNA-FITC/IP), mitochondrial membrane potential (Mitotracker Deep Red 633), lipoperoxidation (C11 BODIPY 581/591), intracellular reactive oxygen species (ROS) production and DNA status (SCSA®®) were assessed. A linear mixed-effects models were used to analyze the effects of time, NE, and oxidant (fixed factors) on sperm parameters, and a random effect on the male was also included in the model with Tukey’s post hoc test. Protection of ram spermatozoa with NE resulted in a more vigorous motility under oxidative stress conditions with respect Control and Free vitamin E, while preventing the deleterious effects of oxidative stress coming from the production of free radicals and lipid peroxidation. These results ascertain the high relevance of the use of delivery systems for sperm physiology preservation in the context of assisted reproduction techniques.Grants AGL2017-85603-P, PID2020-120281RB-I00, and PID2020-117788RB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and, as appropriate, by “ERDF A way of making Europe”, by the “European Union”, or by the “European Union NextGenerationEU/PRTR”. A.J.-C. was supported by a UCLM scholarship, and P.J.S.-M. was supported by a JCCM scholarship.Peer reviewe
    corecore