139 research outputs found
La razón y la pasión
Sobre Las razones del corazón, dirigida por Arturo Ripstein. Con Arcelia Ramirez, Vladimir Cruz y Plutarco Haza
Su espíritu vive en la muestra
Sobre Homenaje al arquitecto-artista Clorindo Testa, en el C.C. Recoleta, edificio que él mismo rediseñó. Sala Cronopios. Del 20 de setiembre al 13 de octubre. Martes a viernes de 14 a 21 hs. Sábados, domingos y feriados de 12 a 21 hs. Entrada gratuita
The value of Interferon β in multiple sclerosis and novel opportunities for its anti-viral activity: a narrative literature review
: Interferon-beta (IFN-β) for Multiple Sclerosis (MS) is turning 30. The COVID-19 pandemic rejuvenated the interest in interferon biology in health and disease, opening translational opportunities beyond neuroinflammation. The antiviral properties of this molecule are in accord with the hypothesis of a viral etiology of MS, for which a credible culprit has been identified in the Epstein-Barr Virus. Likely, IFNs are crucial in the acute phase of SARS-CoV-2 infection, as demonstrated by inherited and acquired impairments of the interferon response that predispose to a severe COVID-19 course. Accordingly, IFN-β exerted protection against SARS-CoV-2 in people with MS (pwMS). In this viewpoint, we summarize the evidence on IFN-β mechanisms of action in MS with a focus on its antiviral properties, especially against EBV. We synopsize the role of IFNs in COVID-19 and the opportunities and challenges of IFN-β usage for this condition. Finally, we leverage the lessons learned in the pandemic to suggest a role of IFN-β in long-COVID-19 and in special MS subpopulations
Role of Electrostatic Interactions in Calcitonin Prefibrillar Oligomer-Induced Amyloid Neurotoxicity and Protective Effect of Neuraminidase
Salmon calcitonin is a good model for studying amyloid behavior and neurotoxicity. Its slow aggregation rate allows the purification of low molecular weight prefibrillar oligomers, which are the most toxic species. It has been proposed that these species may cause amyloid pore formation in neuronal membranes through contact with negatively charged sialic acid residues of the ganglioside GM1. In particular, it has been proposed that an electrostatic interaction may be responsible for the initial contact between prefibrillar oligomers and GM1 contained in lipid rafts. Based on this evidence, the aim of our work was to investigate whether the neurotoxic action induced by calcitonin prefibrillar oligomers could be counteracted by treatment with neuraminidase, an enzyme that removes sialic acid residues from gangliosides. Therefore, we studied cell viability in HT22 cell lines and evaluated the effects on synaptic transmission and long-term potentiation by in vitro extracellular recordings in mouse hippocampal slices. Our results showed that treatment with neuraminidase alters the surface charges of lipid rafts, preventing interaction between the calcitonin prefibrillar oligomers and GM1, and suggesting that the enzyme, depending on the concentration used, may have a partial or total protective action in terms of cell survival and modulation of synaptic transmission
CNS inflammatory demyelinating events after COVID-19 vaccines: A case series and systematic review
BackgroundVaccinations provided the most effective tool to fight the SARS-CoV-2 pandemic. It is now well established that COVID-19 vaccines are safe for the general population; however, some cases of rare adverse events following immunization have been described, including CNS Inflammatory Demyelinating Events (CIDEs). Although observational studies are showing that these events are rare and vaccines' benefits highly outweigh the risks, collecting and characterizing post-COVID-19 vaccine CIDEs might be relevant to single out potential risk factors and suggest possible underlying mechanisms. MethodsHere we describe six CIDEs, including two acute transverse myelitis (ATM), three multiple sclerosis (MS), and one neuromyelitis optica spectrum disorder (NMOSD), occurring between 8 and 35 days from a COVID-19 vaccine. Moreover, we performed a systematic literature search of post-COVID-19 vaccines CIDEs, including ATM, ADEM, MS, and NMOSD/MOGAD, published worldwide between December 2020 and December 2021, during 1 year of the vaccination campaign. Clinical/MRI and CSF/serum characteristics were extracted from reviewed studies and pooled-analyzed. ResultsForty-nine studies were included in the systematic review, reporting a total amount of 85 CIDEs. Considering our additional six cases, 91 CIDEs were summarized, including 24 ATM, 11 ADEM, 47 MS, and nine NMOSD/MOGAD. Overall, CIDEs occurred after both mRNA (n = 46), adenoviral-vectored (n = 37), and inactivated vaccines (n = 8). Adenoviral-vectored vaccines accounted for the majority of ADEM (55%) and NMOSD/MOGAD (56%), while mRNA vaccines were more frequent in MS new diagnoses (87%) and relapses (56%). Age was heterogeneous (19-88) and the female sex was prevalent. Time from vaccine to symptoms onset was notably variable: ADEM and NMOSD/MOGAD had a longer median time of onset (12.5 and 10 days) compared to ATM and MS (6 and 7 days) and further timing differences were observed between events following different vaccine types, with ATM and MS after mRNA-vaccines occurring earlier than those following adenoviral-vectored ones. ConclusionBoth the prevalence of vaccine types for certain CIDEs and the heterogeneity in time of onset suggest that different mechanisms-with distinct dynamic/kinetic-might underly these events. While epidemiological studies have assessed the safety of COVID-19 vaccines, descriptions and pooled analyses of sporadic cases may still be valuable to gain insights into CIDE's pathophysiology
GWAS-associated Variants, Non-genetic Factors, and Transient Transcriptome in Multiple Sclerosis Etiopathogenesis: a Colocalization Analysis [preprint]
A clinically actionable understanding of multiple sclerosis (MS) etiology goes through GWAS interpretation, prompting research on new gene regulatory models. Our previous works on these topics suggested a stochastic etiologic model where small-scale random perturbations could eventually reach a threshold for MS onset and progression. A new sequencing technology has mapped the transient transcriptome (TT), including intergenic RNAs, and antisense intronic RNAs. Through a rigorous colocalization analysis, here we show that genomic regions coding for the TT were significantly enriched for both MS-associated GWAS variants, and DNA binding sites for molecular transducers mediating putative, non-genetic, etiopathogenetic factors for MS (e.g., vitamin D deficiency, Epstein Barr virus latent infection, B cell dysfunction). These results suggest a model whereby TT-coding regions are hotspots of convergence between genetic ad non-genetic factors of risk/protection for MS (and plausibly for other complex disorders). Our colocalization analysis also provides a freely available data resource at www.mscoloc.com for future research on transcriptional regulation in MS
Evaluation of symptoms and prevention of cancer in menopause: the value of vulvar exam
Vulvar and vaginal atrophy (VVA), is a chronic medical condition experienced by postmenopausal women, with prevalence estimated ranging from 10% to 50% [1]. VVA is characterized by a
constellation of symptoms, that may affect daily activities, sexuality, relationships, and quality of life [3].
Early recognition and effective treatment of VVA may enhance sexual health and the quality of life of women and their partners. Some vulvar conditions such as lichen sclerosus are more prevalent in the postmenopausal years. Lichen sclerosus has been suggested as a precursor of Vulvar squamous cell carcinoma. The
vulvar exam in post-menopausal women plays an essential role in prevention of cancer because it allows to
identify women who should undergo vulvar skin biopsy in order to early detect pre-neoplastic lesions for
early diagnosis of cancer of the vulva
- …