14 research outputs found

    Modulating bioreductive drug activity with antivascular agents

    No full text
    Modulation of tumor hypoxia to increase bioreductive drug antitumor activity was investigated. The antivascular agent 5,6-dimethylxanthenone acetic acid (DMXAA) was used in combination studies with the bioreductive drugs Tirapazamine (TPZ) and Mitomycin C (MMC). Blood perfusion studies with DMXAA showed a maximal reduction of 66% in tumor blood flow 4 hours post drug administration. This tumor specific decrease in perfusion was also found to be dose-dependent, with 25 and 30 mg/kg DMXAA yielding greater than 50% reduction in tumor blood flow. Increases in antitumor activity with combination therapy (bioreductive drugs ++ DMXAA) were significant over individual therapies, suggesting an increased activity due to increased hypoxia induced by DMXAA. Combination studies yielded the following significant tumor growth delays over control: MMC (5mg/kg) ++ DMXAA (25mg/kg) = 20 days, MMC (2.5mg/kg) ++ DMXAA (25 mg/kg) = 8 days, TPZ (21.4mg/kg) ++ DMXAA (17.5mg/kg) = 4 days. The mechanism of interaction of these drugs was investigated by measuring metabolite production and DNA damage. \u27Real time\u27 microdialysis studies indicated maximal metabolite production at 20-30 minutes post injection for individual and combination therapies. DNA double strand breaks induced by TPZ ±\pm DMXAA (20 minutes post injection) were analyzed by pulsed field gel electrophoresis (PFGE). Southern blot analyses and quantification showed TPZ induced DNA double strand breaks, but this effect was not evident in combination studies with DMXAA. Based on these data, combination studies of TPZ ++ DMXAA showed increased antitumor activity over individual drug therapies. The mechanism of this increased activity, however, does not appear to be due to an increase in TPZ bioreduction at this time point

    Neoadjuvant Chemotherapy with Laser Interstitial Thermal Therapy in Central Nervous System Neuroblastoma: Illustrative Case and Literature Review

    No full text
    Primitive neuroectodermal tumors of the central nervous system, or CNS neuroblastoma, are rare neoplasms in children. Recently, methylation profiling enabled the discovery of four distinct entities of these tumors. The current treatment paradigm involves surgical resection followed by chemotherapy and radiation. However, upfront surgical resection carries high surgical morbidity in this patient population due to their young age, tumor vascularity, and often deep location in the brain. We report a case of CNS neuroblastoma that can be successfully treated with neoadjuvant chemotherapy followed by minimally invasive laser interstitial thermal therapy and radiation. The patient has complete treatment with no evidence of recurrence at one year follow-up. This case illustrates a potential paradigm shift in the treatment of these rare tumors can be treated using minimally invasive surgical approach to achieve a favorable outcome

    Reading lives - how the personal might be social

    No full text
    This article addresses the issue of how sociologists can re-integrate the study, and the status, of the individual into social theory. The author suggests that biography and autobiography provide important resources, through which it is possible to see how specific people internalise particular social expectations and aspirations. The essay includes a brief discussion of aspects of the lives of Simone de Beauvoir and Virginia Woolf

    Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination.

    No full text
    Seasonal influenza vaccine protects 60 to 90% of healthy young adults from influenza infection. The immunological events that lead to the induction of protective antibody responses remain poorly understood in humans. We identified the type of CD4+ T cells associated with protective antibody responses after seasonal influenza vaccinations. The administration of trivalent split-virus influenza vaccines induced a temporary increase of CD4+ T cells expressing ICOS, which peaked at day 7, as did plasmablasts. The induction of ICOS was largely restricted to CD4+ T cells coexpressing the chemokine receptors CXCR3 and CXCR5, a subpopulation of circulating memory T follicular helper cells. Up to 60% of these ICOS+CXCR3+CXCR5+CD4+ T cells were specific for influenza antigens and expressed interleukin-2 (IL-2), IL-10, IL-21, and interferon-Îł upon antigen stimulation. The increase of ICOS+CXCR3+CXCR5+CD4+ T cells in blood correlated with the increase of preexisting antibody titers, but not with the induction of primary antibody responses. Consistently, purified ICOS+CXCR3+CXCR5+CD4+ T cells efficiently induced memory B cells, but not naĂŻve B cells, to differentiate into plasma cells that produce influenza-specific antibodies ex vivo. Thus, the emergence of blood ICOS+CXCR3+CXCR5+CD4+ T cells correlates with the development of protective antibody responses generated by memory B cells upon seasonal influenza vaccination. Sci Transl Med 2013 Apr 17; 5(176):176ra3

    A pilot study of genomic-guided induction therapy followed by immunotherapy with difluoromethylornithine maintenance for high-risk neuroblastoma.

    No full text
    BACKGROUND: Survival for patients with high-risk neuroblastoma (HRNB) remains poor despite aggressive multimodal therapies. AIMS: To study the feasibility and safety of incorporating a genomic-based targeted agent to induction therapy for HRNB as well as the feasibility and safety of adding difluoromethylornithine (DFMO) to anti-GD2 immunotherapy. METHODS: Twenty newly diagnosed HRNB patients were treated on this multicenter pilot trial. Molecular tumor boards selected one of six targeted agents based on tumor-normal whole exome sequencing and tumor RNA-sequencing results. Treatment followed standard upfront HRNB chemotherapy with the addition of the selected targeted agent to cycles 3-6 of induction. Following consolidation, DFMO (750 mg/m2 twice daily) was added to maintenance with dinutuximab and isotretinoin, followed by continuation of DFMO alone for 2 years. DNA methylation analysis was performed retrospectively and compared to RNA expression. RESULTS: Of the 20 subjects enrolled, 19 started targeted therapy during cycle 3 and 1 started during cycle 5. Eighty-five percent of subjects met feasibility criteria (receiving 75% of targeted agent doses). Addition of targeted agents did not result in toxicities requiring dose reduction of chemotherapy or permanent discontinuation of targeted agent. Following standard consolidation, 15 subjects continued onto immunotherapy with DFMO. This combination was well-tolerated and resulted in no unexpected adverse events related to DFMO. CONCLUSION: This study demonstrates the safety and feasibility of adding targeted agents to standard induction therapy and adding DFMO to immunotherapy for HRNB. This treatment regimen has been expanded to a Phase II trial to evaluate efficacy
    corecore