258 research outputs found

    Deregulated expression of TCL1 causes T cell leukemia in mice

    Get PDF
    The TCL1 oncogene on human chromosome 14q32.1 is involved in the development of T cell leukemia in humans. These leukemias are classified either as T prolymphocytic leukemias, which occur very late in life, or as T chronic lymphocytic leukemias, which often arise in patients with ataxia telangiectasia (AT) at a young age. The TCL1 oncogene is activated in these leukemias by juxtaposition to the α or β locus of the T cell receptor, caused by chromosomal translocations t(14:14)(q11:q32), t(7:14)(q35:q32), or by inversions inv(14)(q11:q32). To show that transcriptional alteration of TCL1 is causally involved in the generation of T cell neoplasia we have generated transgenic mice that carry the TCL1 gene under the transcriptional control of the p56(lck) promoter element. The lck-TCL1 transgenic mice developed mature T cell leukemias after a long latency period. Younger mice presented preleukemic T cell expansions expressing TCL1, and leukemias developed only at an older age. The phenotype of the murine leukemias is CD4-CD8+, in contrast to human leukemias, which are predominantly CD4+CD8-. These studies demonstrate that transcriptional activation of the TCL1 protooncogene can cause malignant transformation oft lymphocytes, indicating the role of TCL1 in the initiation of malignant transformation in T prolymphocytic leukemias and T chronic lymphocytic leukemias

    The observed oogenesis impairment in greater amberjack Seriola dumerili (Risso, 1810) reared in captivity is not related to an insufficient liver transcription or oocyte uptake of vitellogenin

    Get PDF
    The greater amberjack Seriola dumerili is an excellent candidate for the Mediterranean aquaculture, due to its large body size and high growth rate, as well as its high flesh quality and commercial value worldwide. For its successful incorporation in the aquaculture industry, an in-depth understanding of the reproductive function of the species under rearing conditions is necessary, since completion of oogenesis in captivity is currently a bottleneck for the commercial production of the species. Liver and ovary samples from wild and captive-reared greater amberjack females were collected at three different phases of the reproductive cycle: early gametogenesis (EARLY, late April-early May), advanced gametogenesis (ADVANCED, late May-early June) and spawning (SPAWNING, late June-July). The cDNAs of three vitellogenins (VtgA, VtgB and VtgC) were partially sequenced and a qRT-PCR for their expression was used to compare ovarian maturity stage and liver vitellogenin transcript levels between wild and captive-reared individuals. An extensive atresia of late vitellogenic follicles, which prevented any further oocyte development and spawning was observed in captive-reared individuals during the ADVANCED phase. The expression levels of the three vitellogenins, as well as the amount of yolk globules in vitellogenic oocytes, did not differ significantly between captive-reared and wild females, indicating that the observed oogenesis impairment in greater amberjack reared in captivity was not related to an insufficient liver synthesis or a reduced oocyte uptake of vitellogenin

    Mechanisms of endothelial cell dysfunction in cystic fibrosis

    Get PDF
    Although cystic fibrosis (CF) patients exhibit signs of endothelial perturbation, the functions of the cystic fibrosis conductance regulator (CFTR) in vascular endothelial cells (EC) are poorly defined. We sought to uncover biological activities of endothelial CFTR, relevant for vascular homeostasis and inflammation. We examined cells from human umbilical cords (HUVEC) and pulmonary artery isolated from non-cystic fibrosis (PAEC) and CF human lungs (CF-PAEC), under static conditions or physiological shear. CFTR activity, clearly detected in HUVEC and PAEC, was markedly reduced in CF-PAEC. CFTR blockade increased endothelial permeability to macromolecules and reduced trans‑endothelial electrical resistance (TEER). Consistent with this, CF-PAEC displayed lower TEER compared to PAEC. Under shear, CFTR blockade reduced VE-cadherin and p120 catenin membrane expression and triggered the formation of paxillin- and vinculin-enriched membrane blebs that evolved in shrinking of the cell body and disruption of cell-cell contacts. These changes were accompanied by enhanced release of microvesicles, which displayed reduced capability to stimulate proliferation in recipient EC. CFTR blockade also suppressed insulin-induced NO generation by EC, likely by inhibiting eNOS and AKT phosphorylation, whereas it enhanced IL-8 release. Remarkably, phosphodiesterase inhibitors in combination with a β2 adrenergic receptor agonist corrected functional and morphological changes triggered by CFTR dysfunction in EC. Our results uncover regulatory functions of CFTR in EC, suggesting a physiological role of CFTR in the maintenance EC homeostasis and its involvement in pathogenetic aspects of CF. Moreover, our findings open avenues for novel pharmacology to control endothelial dysfunction and its consequences in CF

    TLR7 ligation augments hematopoiesis in Rps14 (uS11) deficiency via paradoxical suppression of inflammatory signaling

    Get PDF
    Myelodysplastic syndrome (MDS) is a hematological malignancy characterized by blood cytopenias and predisposition to acute myeloid leukemia (AML). Therapies for MDS are lacking, particularly those that have an impact in the early stages of disease. We developed a model of MDS in zebrafish with knockout of Rps14, the primary mediator of the anemia associated with del(5q) MDS. These mutant animals display dose- and age-dependent abnormalities in hematopoiesis, culminating in bone marrow failure with dysplastic features. We used Rps14 knockdown to undertake an in vivo small-molecule screening, to identify compounds that ameliorate the MDS phenotype, and we identified imiquimod, an agonist of Toll-like receptor-7 (TLR7) and TLR8. Imiquimod alleviates anemia by promoting hematopoietic stem and progenitor cell expansion and erythroid differentiation, the mechanism of which is dependent on TLR7 ligation and Myd88. TLR7 activation in this setting paradoxically promoted an anti-inflammatory gene signature, indicating cross talk via TLR7 between proinflammatory pathways endogenous to Rps14 loss and the NF-κB pathway. Finally, in highly purified human bone marrow samples from anemic patients, imiquimod led to an increase in erythroid output from myeloerythroid progenitors and common myeloid progenitors. Our findings have both specific implications for the development of targeted therapeutics for del(5q) MDS and wider significance identifying a potential role for TLR7 ligation in modifying anemia

    Association between childhood trauma and mental health disorders in adolescents during the second pandemic wave of COVID-19, Chiclayo-Peru

    Get PDF
    "Introduction: The COVID-19 pandemic has significantly affected mental health, with children and adolescents being particularly vulnerable. Evidence on the association between childhood trauma and mental health outcomes in schoolchildren during the pandemic is limited. This study aimed to evaluate this relationship in Chiclayo city, northern Peru, during the second wave of COVID-19. Methods: A cross-sectional secondary data study was conducted, measuring childhood trauma using the Marshall’s Trauma Scale, depressive symptomatology (PHQ-9), and anxiety symptomatology (GAD-7). Additional variables assessed were alcohol use (AUDIT), resilience (abbreviated CD-RISC), and socio-educational data. Prevalence ratios were estimated using generalized linear models. Results: Among 456 participants, 88.2% were female, with a mean age of 14.5 years (SD: 1.33). Depressive symptomatology prevalence was 76.3% (95%CI: 72.14– 80.15) and increased by 23% in schoolchildren with childhood trauma (PR: 1.23; 95%CI: 1.10–1.37). Factors positively associated with depressive symptomatology included increasing age, seeking mental health help during the pandemic, and severe family dysfunction. Anxiety symptomatology prevalence was 62.3% (95%CI: 57.65–66.75) and increased by 55% in schoolchildren with childhood trauma (PR: 1.55; 95%CI: 1.31–1.85). Anxiety symptomatology was positively associated with mild, moderate, and severe family dysfunction. Conclusion: Schoolchildren exposed to childhood trauma are at increased risk for depressive and anxiety symptoms. Monitoring the impact of the COVID-19 pandemic on adolescent mental health is vital. These findings can assist schools in establishing effective measures to prevent mental health outcomes

    Hematopoietic stem and progenitor cells are a distinct HIV reservoir that contributes to persistent viremia in suppressed patients

    Get PDF
    Long-lived reservoirs of persistent HIV are a major barrier to a cure. CD4+ hematopoietic stem and progenitor cells (HSPCs) have the capacity for lifelong survival, self-renewal, and the generation of daughter cells. Recent evidence shows that they are also susceptible to HIV infection in vitro and in vivo. Whether HSPCs harbor infectious virus or contribute to plasma virus (PV) is unknown. Here, we provide strong evidence that clusters of identical proviruses from HSPCs and their likely progeny often match residual PV. A higher proportion of these sequences match residual PV than proviral genomes from bone marrow and peripheral blood mononuclear cells that are observed only once. Furthermore, an analysis of near-full-length genomes isolated from HSPCs provides evidence that HSPCs harbor functional HIV proviral genomes that often match residual PV. These results support the conclusion that HIV-infected HSPCs form a distinct and functionally significant reservoir of persistent HIV in infected people

    A novel oral micellar fenretinide formulation with enhanced bioavailability and antitumour activity against multiple tumours from cancer stem cells

    Get PDF
    Background: An increasing number of anticancer agents has been proposed in recent years with the attempt to overcome treatment-resistant cancer cells and particularly cancer stem cells (CSC), the major culprits for tumour resistance and recurrence. However, a huge obstacle to treatment success is the ineffective delivery of drugs within the tumour environment due to limited solubility, short circulation time or inconsistent stability of compounds that, together with concomitant dose-limiting systemic toxicity, contribute to hamper the achievement of therapeutic drug concentrations. The synthetic retinoid Fenretinide (4-hydroxy (phenyl)retinamide; 4-HPR) formerly emerged as a promising anticancer agent based on pre-clinical and clinical studies. However, a major limitation of fenretinide is traditionally represented by its poor aqueous solubility/bioavailability due to its hydrophobic nature, that undermined the clinical success of previous clinical trials. Methods: Here, we developed a novel nano-micellar fenretinide formulation called bionanofenretinide (Bio-nFeR), based on drug encapsulation in an ion-pair stabilized lipid matrix, with the aim to raise fenretinide bioavailability and antitumour efficacy. Results: Bio-nFeR displayed marked antitumour activity against lung, colon and melanoma CSC both in vitro and in tumour xenografts, in absence of mice toxicity. Bio-nFeR is suitable for oral administration, reaching therapeutic concentrations within tumours and an unprecedented therapeutic activity in vivo as single agent. Conclusion: Altogether, our results indicate Bio-nFeR as a novel anticancer agent with low toxicity and high activity against tumourigenic cells, potentially useful for the treatment of solid tumours of multiple origin
    corecore