59 research outputs found

    Assessing the impacts of the first year of rotavirus vaccination in the United Kingdom

    Get PDF
    The United Kingdom (UK) added rotavirus (RV) vaccine (Rotarix GlaxoSmithKline) to the national vaccine schedule in July 2013. During the 2012–2014 rotavirus seasons, children presenting to the Bristol Royal Hospital for Children Emergency Department with gastroenteritis symptoms had stool virology analysis (real-time PCR) and clinical outcome recorded. Nosocomial cases were identified as patients with non-gastroenteritis diagnosis testing positive for rotavirus > 48h after admission. In comparison to average pre-vaccine seasons, in the first year after vaccine introduction there were 48% fewer attendances diagnosed with gastroenteritis, 53% reduction in gastroenteritis admissions and a total saving of 330 bed-days occupancy. There was an overall reduction in number of rotavirus-positive stool samples with 94% reduction in children aged under one year and a 65% reduction in those too old to have been vaccinated. In the first year after the introduction of universal vaccination against rotavirus we observed a profound reduction in gastroenteritis presentations and admissions with a substantial possible herd effect seen in older children. Extrapolating these findings to the UK population we estimate secondary healthcare savings in the first year of ca £7.5 (€10.5) million. Ongoing surveillance will be required to determine the long-term impact of the RV immunisation programme

    Linking healthcare associated norovirus outbreaks: a molecular epidemiologic method for investigating transmission.

    Get PDF
    BACKGROUND: Noroviruses are highly infectious pathogens that cause gastroenteritis in the community and in semi-closed institutions such as hospitals. During outbreaks, multiple units within a hospital are often affected, and a major question for control programs is: are the affected units part of the same outbreak or are they unrelated transmission events? In practice, investigators often assume a transmission link based on epidemiological observations, rather than a systematic approach to tracing transmission.Here, we present a combined molecular and statistical method for assessing:1) whether observed clusters provide evidence of local transmission and2) the probability that anecdotally|linked outbreaks truly shared a transmission event. METHODS: 76 healthcare associated outbreaks were observed in an active and prospective surveillance scheme of 15 hospitals in the county of Avon, England from April 2002 to March 2003. Viral RNA from 64 out of 76 specimens from distinct outbreaks was amplified by reverse transcription-PCR and was sequenced in the polymerase (ORF 1) and capsid (ORF 2) regions. The genetic diversity, at the nucleotide level, was analysed in relation to the epidemiological patterns. RESULTS: Two out of four genetic and epidemiological clusters of outbreaks were unlikely to have occurred by chance alone, thus suggesting local transmission. There was anecdotal epidemiological evidence of a transmission link among 5 outbreaks pairs. By combining this epidemiological observation with viral sequence data, the evidence of a link remained convincing in 3 of these pairs. These results are sensitive to prior beliefs of the strength of epidemiological evidence especially when the outbreak strains are common in the background population. CONCLUSION: The evidence suggests that transmission between hospitals units does occur. Using the proposed criteria, certain hypothesized transmission links between outbreaks were supported while others were refuted. The combined molecular/epidemiologic approach presented here could be applied to other viral populations and potentially to other pathogens for a more thorough view of transmission

    Population density profiles of nasopharyngeal carriage of 5 bacterial species in pre-school children measured using quantitative PCR offer potential insights into the dynamics of transmission.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesBacterial vaccines can reduce carriage rates. Colonization is usually a binary endpoint. Real time quantitative PCR (qPCR) can quantify bacterial DNA in mucosal samples over a wide range. Using culture and single-gene species-specific qPCRs for Streptococcus pneumoniae (lytA), Streptococcus pyogenes (ntpC), Moraxella catarrhalis (ompJ), Haemophilus influenzae (hdp) and Staphylococcus aureus (nuc) and standard curves against log-phase reference strain broth cultures we described frequency and peak density distributions of carriage in nasopharyngeal swabs from 161 healthy 2-4 y old children collected into STGG broth. In general, detection by qPCR and culture was consistent. Discordance mostly occurred at lower detection thresholds of both methods, although PCR assays for S. pyogenes and S. aureus were less sensitive. Density varied across 5-7 orders of magnitude for the 5 species with the abundant species skewed toward high values (modes: S. pneumoniae log3-4, M. catarrhalis & H. influenzae log4-5 CFU/ml broth). Wide ranges of bacterial DNA concentrations in healthy children carrying these bacteria could mean that different individuals at different times vary greatly in infectiousness. Understanding the host, microbial and environmental determinants of colonization density will permit more accurate prediction of vaccine effectiveness.ESPID research fellowshi

    The Effects of LAIV on Nasopharyngeal Bacteria in Healthy 2-4 Year Olds:a Randomized Controlled Trial

    Get PDF
    Rationale: Viral infections of the upper respiratory tract may influence the commensal nasopharyngeal bacteria. Changes in the bacterial niche could affect transmission dynamics. Attenuated vaccine viruses can be used to investigate this empirically in humans. Objectives: To study the effects of mild viral upper respiratory infections on nasopharyngeal bacterial colonization using live attenuated influenza vaccine (LAIV) as a surrogate. Methods: We used trivalent LAIV to evaluate the effects of viral infection on bacterial carriage and density of Streptococcus pneumoniae, Moraxella catarrhalis, Haemophilus influenzae, and Staphylococcus aureus. A total of 151 healthy children were randomized 1:1 to receive the vaccine starting either at recruitment (n = 74) or 28 days later (n = 77) in a stepped wedge fashion, allowing comparisons between recipients and nonrecipients as well as whole-group comparisons pre- and postvaccination. Bacterial carriage and density were determined using quantitative polymerase chain reaction assays. Measurements and Main Results: A total of 151 children were recruited, 77 in the LAIV group and 74 in the control group. LAIV recipients (n = 63 analyzed) showed an apparent transient increase in H. influenzae carriage but no further significant differences in carriage prevalence of the four bacterial species compared with controls (n = 72 analyzed). S. pneumoniae density was substantially higher in vaccine recipients (16,687 vs. 1935 gene copies per milliliter) 28 days after the first dose (P < 0.001). Whole-group multivariable analysis (prevaccine, after one dose, and after two doses) also showed increases in density of other species and H. influenzae carriage prevalence. Conclusions: In the absence of any safety signals despite widespread use of the vaccine, these findings suggest that bacterial density, and thus transmission rates among children and to people in other age groups, may rise following attenuated influenza infections without associated clinical disease. LAIV could therefore be used as an experimental tool to elucidate the dynamics of transmission of nasopharyngeal bacteria

    High Density Bacterial Nasal Carriage in Children is Transient and Associated With Respiratory Viral Infections - Implications for Transmission Dynamics

    Get PDF
    To access publisher's full text version of this article click on the hyperlink belowBACKGROUND: This longitudinal study describes the associations between respiratory viral infections, rhinitis and the prevalence and density of the common nasopharyngeal bacterial colonizers, Streptococcus pneumoniae (Sp), Moraxella catarrhalis (Mc), Haemophilus influenzae (Hi) and Staphylococcus aureus. METHODS: In an observational cohort study, 161 children attending day care centers in Bristol, United Kingdom, were recruited. Monthly nasopharyngeal swabs were taken and stored frozen in Skim-milk, tryptone, glucose and glycerin broth (STGG) broth. Quantitative polymerase chain reaction was used for detection of respiratory viruses and 4 bacterial species. t tests and logistic regression models were used for analysis. RESULTS: The frequent colonisers, Sp, Mc and Hi were more frequently found at high density in contrast to Staphylococcus aureus although temporally, high-density carriage was short lived. Respiratory viral infections and symptoms of rhinitis were both independently and consistently associated with higher bacterial density with an observed 2-fold increase in density for Sp, Mc and Hi (P = 0.004-0.017). CONCLUSIONS: For Sp and Hi, the association between young age and higher bacterial DNA density was explained by more frequent viral infection and increased nasal discharge, while the associations between some viral specie's and some bacterial species' density appear to be stronger than others. Increased colonization density and rhinitis may promote transmission of these commonly carried organisms

    Epidemiology of pleural empyema in English hospitals and the impact of influenza

    Get PDF
    Pleural empyema represents a significant healthcare burden due to extended hospital admissions and potential requirement for surgical intervention. This study aimed to assess changes in incidence and management of pleural empyema in England over the past 10 years and the potential impact of influenza on rates. Hospital Episode Statistics data were used to identify patients admitted to English hospitals with pleural empyema between 2008 and 2018. Linear regression was used to analyse the relationship between empyema rates and influenza incidence recorded by Public Health England. The relationship between influenza and empyema was further explored using serological data from a prospective cohort study of patients presenting with pleural empyema. Between April 2008 and March 2018 there were 55 530 patients admitted with pleural empyema. There was male predominance (67% versus 33%), which increased with age. Cases have increased significantly from 4447 in 2008 to 7268 in 2017. Peaks of incidence correlated moderately with rates of laboratoryconfirmed influenza in children and young adults (r=0.30). For nine of the 10 years studied, the highest annual point incidence of influenza coincided with the highest admission rate for empyema (with a 2-week lag). In a cohort study of patients presenting to a single UK hospital with pleural empyema/ infection, 24% (17 out of 72) had serological evidence of recent influenza infection, compared to 7% in seasonally matched controls with simple parapneumonic or cardiogenic effusions (p<0.001). Rates of empyema admissions in England have increased steadily with a seasonal variation that is temporally related to influenza incidence. Patient-level serological data from a prospective study support the hypothesis that influenza may play a pathogenic role in empyema development

    Typing complex meningococcal vaccines to understand diversity and population structure of key vaccine antigens [version 1; referees: 2 approved]

    Get PDF
    Background: Protein-conjugate capsular polysaccharide vaccines can potentially control invasive meningococcal disease (IMD) caused by five (A, C, W, X, Y) of the six IMD-associated serogroups.  Concerns raised by immunological similarity of the serogroup B capsule, to human neural cell carbohydrates, has meant that ‘serogroup B substitute’ vaccines target more variable subcapsular protein antigens.  A successful approach using outer membrane vesicles (OMVs) as major vaccine components had limited strain coverage. In 4CMenB (Bexsero®), recombinant proteins have been added to ameliorate this problem.  Methods: Here, scalable, portable, genomic techniques were used to investigate the Bexsero® OMV protein diversity in meningococcal populations. Shotgun proteomics identified 461 proteins in the OMV, defining a complex proteome. Amino acid sequences for the 24 proteins most likely to be involved in cross-protective immune responses were catalogued within the PubMLST.org/neisseria database using a novel OMV peptide Typing (OMVT) scheme. Results: Among these proteins there was variation in the extent of diversity and association with meningococcal lineages, identified as clonal complexes (ccs), ranging from the most conserved peptides (FbpA, NEISp0578, and putative periplasmic protein, NEISp1063) to the most diverse (TbpA, NEISp1690).  There were 1752 unique OMVTs identified amongst 2492/3506 isolates examined by whole-genome sequencing (WGS). These OMVTs were grouped into clusters (sharing ≥18 identical OMVT peptides), with 45.3% of isolates assigned to one of 27 OMVT clusters. OMVTs and OMVT clusters were strongly associated with cc, genogroup, and Bexsero® antigen variants, demonstrating that combinations of OMV proteins exist in discrete, non-overlapping combinations associated with genogroup and Bexsero® Antigen Sequence Type. This highly structured population of IMD-associated meningococci is consistent with strain structure models invoking host immune selection. Conclusions: The OMVT scheme facilitates region-specific WGS investigation of meningococcal diversity and is an open-access, portable tool with applications for vaccine development, especially in the choice of antigen combinations, assessment and implementation
    corecore