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Abstract
Background: Noroviruses are highly infectious pathogens that cause gastroenteritis in the community
and in semi-closed institutions such as hospitals. During outbreaks, multiple units within a hospital are
often affected, and a major question for control programs is: are the affected units part of the same
outbreak or are they unrelated transmission events? In practice, investigators often assume a transmission
link based on epidemiological observations, rather than a systematic approach to tracing transmission.

Here, we present a combined molecular and statistical method for assessing:

1) whether observed clusters provide evidence of local transmission and

2) the probability that anecdotally|linked outbreaks truly shared a transmission event.

Methods: 76 healthcare associated outbreaks were observed in an active and prospective surveillance
scheme of 15 hospitals in the county of Avon, England from April 2002 to March 2003. Viral RNA from
64 out of 76 specimens from distinct outbreaks was amplified by reverse transcription-PCR and was
sequenced in the polymerase (ORF 1) and capsid (ORF 2) regions. The genetic diversity, at the nucleotide
level, was analysed in relation to the epidemiological patterns.

Results: Two out of four genetic and epidemiological clusters of outbreaks were unlikely to have
occurred by chance alone, thus suggesting local transmission. There was anecdotal epidemiological
evidence of a transmission link among 5 outbreaks pairs. By combining this epidemiological observation
with viral sequence data, the evidence of a link remained convincing in 3 of these pairs. These results are
sensitive to prior beliefs of the strength of epidemiological evidence especially when the outbreak strains
are common in the background population.

Conclusion: The evidence suggests that transmission between hospitals units does occur. Using the
proposed criteria, certain hypothesized transmission links between outbreaks were supported while
others were refuted. The combined molecular/epidemiologic approach presented here could be applied
to other viral populations and potentially to other pathogens for a more thorough view of transmission.
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Background
Noroviruses are highly infectious organisms that cause an
acute and short-lived gastroenteritis [1]. They are the most
common etiologic agent associated with infectious intes-
tinal disease [2,3]. Akin to many other gastroenteric path-
ogens, they are transmitted by the faecal-oral route. But,
the virus also causes a high frequency of vomiting. During
such an episode, virus is aerosolised. It can then be trans-
mitted directly through the air or can settle and contami-
nate the surrounding environment or foodstuffs, later to
be inadvertently swallowed [4]. Thus the transmission
pathways of norovirus are complex and the application of
molecular typing of the virus holds promise in furthering
understanding of transmission [5]/

Molecular data have been used to describe the genetic
diversity of norovirus in various national and regional
populations [6-14]. These studies have collectively dem-
onstrated these viruses are genetically diverse and
dynamic, with new variants regularly replacing predomi-
nant strains. Moreover, molecular techniques are increas-
ingly applied to assess suspected transmission links
between outbreaks [5] A number of investigations illus-
trate this. Identical virus has been detected in patients as
well as on an implicated food from a delicatessen meal
[15]. A multi-state outbreak has been linked to a common
source through tracing of common sequences in patients
and a widely distributed oyster product [16]. Internation-
ally-distributed raspberries have been linked through
identical sequences following the distribution of a frozen
fruit product throughout Europe and Canada [17]. These
are only a few of the increasing number of reports which
demonstrate the value of molecular genotyping. However,
this approach has exclusively been used in the investiga-
tion of food and waterborne incidents which are a minor-
ity of norovirus outbreaks, at least in European countries
[18].

Although these potentially linked outbreaks provide
interesting anecdotes, from a statistical/sampling sense
they may be dubious. The statistical question – what are
the chances of detecting two outbreaks of the same geno-
type? – is purely data-driven, rather than hypothesis-
driven.

Another problem with this approach, which is a general
phenomenon in tracking pathogens, is that links will
more often be hypothesised amongst rare types than com-
mon ones. The example of Salmonella highlights this.
International outbreaks of Salmonella serotypes includ-
ing Newport, [19] Anatum, [20] Saphra, [21] Bovismorb-
ificans [22] and Agona [23], which represent relatively
rare types, have been reported. In contrast, the linking of
outbreaks caused by the major epidemic type, Salmonella

enteritidis phage type 4, has proven extremely difficult
[24].

In this paper, we will consider the question of using
molecular data to assess norovirus transmission events in
healthcare settings. The aim is to develop and test a system
that is meaningful at the virus population-level, rather
than to highlight rare events. The statistical methods that
are applied here attempt to assess the significance of the
molecular patterns in light of various epidemiological fac-
tors. Sound probabilistic criteria for linking of outbreaks
and for assessing differences in molecular epidemiologic
patterns with reference to place and time are presented.

Ethical approval for this study was obtained from the
South West Multi-centre Research Ethics Committee. In
nursing homes, executives provided written consent for
the study to take place in their institutions; senior infec-
tion control nurses as well as microbiologists provided
written consent for their hospital's participation.

Methods
The surveillance scheme and selection of strains for 
characterisation
Starting in April 2002, we conducted an active and system-
atic prospective study of gastroenteritis outbreaks in 171
inpatient units in 15 hospitals in the county of Avon, Eng-
land [25]. Standard clinical definitions (of a case and a
series of cases comprising an outbreak of gastroenteritis),
uniform outbreak investigation, state-of-the-art diagnos-
tics and null reporting ensured complete ascertainment of
high quality epidemiological data. One or more faecal
specimens were taken from affected persons in 122 of the
227 (53%) outbreaks. Of these, one or more specimen
was positive for norovirus by RT-PCR [26] and/or ELISA
[27] in 76 (63%) outbreaks. A single specimen from each
norovirus-positive outbreak was selected for characterisa-
tion (except for the similarity criteria experiments
described below).

Typing scheme
Two regions of the norovirus genome were amplified and
sequenced for each specimen. These regions were seg-
ments of the polymerase gene (open reading frame (ORF)
1) and the capsid gene (ORF 2). Ni/E3 primers were ini-
tially used to amplify the polymerase gene [26] and Mon
381/383 primers were used to amplify the capsid gene
[28]. PCR products of Mon 381/383, at approximately
280 bases, were directly sequenced. Ni/E3 products are
shorter at approximately 80 bases, and therefore required
cloning and screening prior to sequencing. Initially, a
third region (the inter-ORF1/ORF2 region) was also
amplified and sequenced. However, initial studies dem-
onstrated that the information added from sequencing
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this region did not affect conclusions and was therefore
discontinued.

Genogroup II4 viruses were assigned a number-letter code
based on their polymerase sequence and capsid sequence,
respectively.

Statistical testing
What is the probability that the observed patterns could be
observed by chance alone?

The pathway of introduction of virus onto a unit can be
broadly grouped into two categories: external (via intro-
duction from the community by staff, patient, visitor or
food) or internal (via transmission from another affected
unit in the hospital). One method of testing the impor-
tance of internal transmission is to compare the viruses
associated with an apparent cluster of outbreaks in a hos-
pital to the whole population of viruses circulating in a
reference population. It was hypothesised that if inter-
hospital transmission played a significant role, the viral
sequences from within a cluster of outbreaks would be
more similar to each other than the viruses in reference
population. Statistical testing was performed when space-
time clusters of outbreaks met two criteria:

A. A cluster of outbreaks was defined as two or more unit
outbreaks, occurring in the same hospital. Outbreaks were
considered to be of the same cluster if the first date of
onset in outbreakn+1 was before the last date of onset in
outbreakn. Thus, a chain of outbreaks were considered to
be part of the same cluster.

B. Within the cluster of outbreaks, there were two or more
identical sequences from different outbreaks.

If the conditions in A and B were met, the probability that
the sequences in the cluster could be randomly drawn
from all virus sequences from the study population was
tested. Viruses were grouped as belonging to the common
sequence or other non-identical sequences. Fisher's exact
test was used to compare the virus in the cluster to all var-
iants identified in the study. If the test was significant (p <
0.05), it was concluded that there was evidence that
viruses were being transmitted within the hospital.

What is the probability that outbreaks with anecdotal links had
a transmission link based on viral sequence data?

In the present study, there were a 5 pairs of outbreaks with
a known epidemiological link to another outbreak. For
these linked outbreaks, the probability that the pair of
viruses were truly linked was estimated, taking into con-
sideration the background virus population. This proba-

bility was estimated using the following formula, the
work-up of this formula is shown in Additional File #1.

P(x|Type = M) = can/(can+(1-c)b)

Where P(x|Type = M) is the probability that the second
outbreak (of virus type 'M') came from the first outbreak.b
is the proportion of viruses of type 'M' in the whole pop-
ulation.a is the probability that two viruses will differ by
n or more nucleotides given that they are from the same
outbreak. (The calculation of the similarity criteria (a) is
described in the next section.) And c is prior estimate of
the probability that the second outbreak has a transmis-
sion link to the first. The sensitivity of the probability esti-
mates to the selection of the prior c will be presented. In
the reported estimates, we assumed that c = 0.5, implying
that it is equally likely that 1) the second outbreak came
from the population and 2) the second outbreak came
from the first case. When c = 0.5, the probability that out-
breaks are linked simplifies to:

P(x|Type = M) = an/(an+b)

Development of similarity criteria (a)
Data from the present study were combined with previous
unpublished work performed by the Enteric Virus Unit to
develop similarity criteria. Data were available from
thirty-three other outbreak studies where multiple speci-
mens were sequenced. Multiple viruses were sequenced
from three outbreaks from the present study. These data
were used to estimate the number of point mutations that
would be expected from virus from the same outbreak. In
the molecular analysis from the present study, 357 bases
were sequenced. Therefore, the expected number of point
mutations per 357 bases between two viruses that truly
had a transmission link was calculated as follows:

a = 357 (M/[Σ L (s)])

where M = number of point mutations, L = sequence
length (bases) and s = number of specimens sequenced.

Results
Virus population
Seventy-six outbreaks were selected for sequencing based
on positive diagnostic results. RT-PCR amplification
failed on 12 of these. Thus, virus from 64 separate out-
breaks was characterised by genetic sequencing. Based on
sequence from the polymerase and capsid, 61 of these
viruses (95%) closely clustered with genogroup II4 (≥90%
similarity with prototype Lorsdale strain). There were sin-
gle detections of a genogroup I2, II3 II6. Fifty-eight of the
61 genogroup II4 viruses (95%) had the AATCTG motif
that characterised the epidemic variant of 2002/03 [29].
Based on the polymerase region, there were 12 unique
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genogroup II4 sequences; based on the capsid region there
were 16. In the polymerase, there were 2 predominant
sequences associated with 30 outbreaks (sequence 1, 50%
of total) and 14 (sequence 2, 23% of total) outbreaks. In
the capsid, there were 45 identical sequences (sequence A,
74% of total); the rest of the Region C sequences were all
unique (n = 16).

When the two regions were analysed together, there were
a total of 26 unique sequences (Table 1). Henceforth var-
iants are referred to by a number arbitrarily assigned to
each unique pol sequence and a letter arbitrarily assigned
to each unique cap sequence. The two most common var-
iants were 1A associated with 23 outbreaks and variant 2B
associated with 13 outbreaks (39% and 21 % of geno-
group II4 outbreaks, respectively).

Hospital outbreaks appeared to cluster temporally, as
shown in the Gantt charts in Figure 1. This figure includes
all gastroenteritis outbreaks – including those where no
specimens were available or were negative for norovi-
ruses. Outbreaks exhibited a wintertime seasonality and
also had a summertime peak – rather then being evenly
distributed throughout the year (p = 0.001, Fisher's exact
test).

Similarity criteria
Combining data from the present study with previous
work, sequences were available from multiple viruses
from 36 outbreaks (Table 2). Amongst these, there were
single nucleotide differences in a total of nine viruses rel-
ative to the consensus outbreak sequence. There were no
outbreaks where sequences differed by more than one
nucleotide.

These data were then used to set 'similarity criteria' (Table
3). Based on these data, if two viruses differed by a single
nucleotide, there was a 17.2% chance they could be from
the same outbreak. Reciprocally, there would be a 82.8%
chance they were from different outbreaks. Summing the
(diminishing) probability of 1, 2, 3, and 4 nucleotide
changes (a+ a2+ a3+ a4...) suggests that if viruses differed by
one or more nucleotides there was a >80% chance that
they were truly from separate outbreaks.

What is the probability that the observed molecular patterns
could be observed by chance alone?

A total of four clusters were detected that met the defini-
tion proposed above (Figure 2). The first was in Hospital
B (July/Aug). The other three occurred in the Hospital A in
September-October, November-January and March.
Although clusters 1 and 2 had higher proportions of 1A
than in the population, the differences did not reach the
level of statistical significance (perhaps due to the small
numbers in the clusters)(Table 4). Clusters 3 and 4, how-
ever, did have significantly higher proportions of 2A and
1A (respectively) than would be expected by chance
(Table 4).

What is the probability that outbreaks with anecdotal links
have a common source?

There were a total of five pairs of outbreaks with anecdotal
evidence of a transmission link between the events. These
outbreaks and the links between them are described in
Table 5. In three out of five of these outbreak-pairs the
sequences in both pol region as well as cap region were
identical. All of these pairs were genogroup II4, variant 1A

Table 1: Combined sequencing results of polymerase and capsid: genogroup II4 strains

Capsid variant*
A B C D E F G H I J K L M N O P Total

Polymerase variant 1 23 1 1 1 1 1 1 1 30
2 13 1 14
3 1 1 1 1 4
4 1 1 1 3
5 2 2
6 1 1
7 1 1
8 1 1
9 1 1
10 1 1
11 1 1
12 1 1

Total 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 60

*One virus was not typed in Region A, which was variant Q in Region C (not shown)
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– the most common variant detected in the outbreaks.
Based on the probability formula, it was estimated that
there was a 72% chance that these viruses shared a trans-
mission link.

Another link, which involved transfer of a symptomatic
patient from nursing home into hospital, was identical in
the pol region but 3 bases different in the cap region.
Finally, two outbreaks linked by the transfer of a patient
from hospital to nursing home were different by a single
base in the pol region and 3 bases in the cap region. Based
on 3 and 4 nucleotide differences between viruses in these
outbreak pairs, it was estimated that there was a less than
20% chance that these outbreaks truly had a transmission
link. All the above probabilities are based on a prior esti-
mate (c) of 0.5 which assumes an equal likelihood that
the second outbreak came from the first and from the
background population. Figure 3 illustrates the sensitivity
of these probability estimates given different prior
assumptions about the strength of the epidemiological
link. When the genetic data is strongly suggestive of a link
(such as pairs 1, 4 and 5), the probability estimate is very
sensitive to the prior. These findings match the intuitive
expectation that if, a priori, we believe a transmission link
is unlikely on epidemiological grounds, a similar viral
sequence should not be convincing. Conversely, if genetic
data suggests that a link is unlikely (such as pairs 2 and 3)
we must have an extremely high prior (c) based on epide-
miological data, in order to conclude that true transmis-
sion link was likely to have occurred. Another
interpretation is that when a virus sequence strain is com-
mon (as in Type 1A in pairs 1/4/5) epidemiological data
must be strong in order to conclude that a transmission
link is likely.

Discussion
In this study, all the norovirus-associated outbreaks in a
well-defined healthcare environment were sequenced. We
have used this data to develop a system for assessing spe-
cific transmission links between outbreaks as well as the
probability that the observed clusters were not due to
chance.

95% of norovirus outbreaks were due to a single geno-
group: II4 (phylogentically similar to what has been
referred to by others as the Grimsby or Lordsdale clade).
This is consistent with Gallimore et al's recognition that
genogroup II4 variants are disproportionately associated
with hospital outbreaks [30] and Koopmans' study that
suggested that this same genotype is more frequently asso-
ciated with outbreaks than sporadic community cases
[13]. But a fundamental question remains unanswered:
what are the unique biological characteristics of this geno-
group that make it so predominant in healthcare settings?

It is clear, therefore, that the viruses causing these health-
care-associated outbreaks are not necessarily representa-
tive of all the circulating strains in the general community.
However, we have no specific reason to believe that the
strains that were amplified and sequenced were not repre-
sentative of healthcare-associated norovirus outbreaks.
Given the different genetic diversity in the community
and healthcare facilities, we selected the healthcare-associ-
ated population of viruses as the reference for these anal-
yses.

Historical data demonstrated that within an outbreak
viruses were nearly identical; these data were then used to
create similarity criteria. The subsequent analyses illus-
trate that combining virological and epidemiological evi-
dence may give insight into transmission events. There
was statistical evidence of greater similarity in clusters of
outbreaks than would be expected from a random sample
of the entire viral population. This suggests that transmis-
sion between hospital units is important.

A number of outbreak pairs that appeared to be linked
based on anecdotal evidence proved to be caused by dif-
ferent viruses based on sequencing. Thus, ad hoc reports of
links between outbreaks may not always be valid, espe-
cially when incidence is high. The opposite is also true:
detection of identical viruses does not assure a direct link
in transmission. Naturally, specific information on events
can and will be taken into account. In this paper, we pro-
pose a method working towards systematising such infor-

Table 3: Development of similarity criteria

Point mutations 
(n nucleotides)

Similarity probability 
formula

The probability (expressed as a percent) that two 
viruses will differ by n or more nucleotides given 
that they are from the same outbreak.

Average number of viral sequences that would have 
to be sequenced from the same outbreak to have 1 
sequence with n nucleotide changes (1/(a)n)

1 nucleotide an = a1 17.2% 6.2
2 nucleotides an = a2 2.96% 38.5
3 nucleotides an = a3 0.509% Approx. 250
4 nucleotides an = a4 0.088% Approx. 1000

Any changes < 20% > 5
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Gantt display of temporal patterns of gastroenteritis outbreaksFigure 1
Gantt display of temporal patterns of gastroenteritis outbreaks. The varying shades of blue background represent hospitals 
within each NHS trust and each horizontal line represents an inpatient unit. Blue sections are 'outbreak-free periods' and 
orange sections are 'outbreak periods' (from the 1st to the last date of onset). A high degree of temporal clustering can be 
observed in all Trusts. In other words, outbreaks do not often appear in isolation but rather many units are affected sequen-
tially.
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mation. We hope such methods will be used and taken
forwards, perhaps in a Bayesian framework where one
begins with a prior likelihood that events are linked, and
the likelihood is updated based on virological or epidemi-
ological findings. In this study we defined a priori what
constituted epidemiological linkage, but, of course, many
processes in infectious disease transmission are unob-
served and therefore, possibility remains that, for exam-
ple, that there were multiple introductions of the same
virus.

In a hospital setting, where there is clearly potential for
internal transmission, one may be drawn to the inference
that identical virus necessarily implies a link. In fact, we
estimate from this study that 15–20% of outbreaks where
virus differs by a single base are really of the same out-
break. This limitation of inference based on genetic data
applies our study as well as to other analysis. What this
study adds is quantification of the level of inaccuracy.

Table 2: Studies that analysed within-outbreak sequence variation (not including mixed outbreaks caused by multiple genotypes), 
includes the present study (n = 3) and various other studies (n = 33) conducted by the Enteric Virus Unit, 2002–04*

Outbreak Genotype Primersa Fragment length (bases) Identical/sequencedb

1 GGII4 Ni/E3, Mon 381/383 357 4/4
2 GGII4 Ni/E3, Mon 381/383 357 4/4
3 GGII4 Ni/E3, Mon 381/383 357 4/5
4 GGI SG1/D1 109 57/60
5 GGIIr Ni/E3 76 9/9
6 GGII4 Ni/E3 76 7/7
7 GGII1 Ni/E3 76 8/8
8 GGII4 Ni/E3 76 2/2
9 GGII4 Ni/E3 76 2/2
10 GI2 SG1/D1 109 2/2
11 GGII4 Ni/E3 76 2/2
12 GGII1 Ni/E3 76 4/4
13 GGII3 Ni/E3 76 3/3
14 GGI1 SG1/D1 109 2/3
15 GGII1 Ni/E3 76 4/4
16 GGI1 SG1/D1 109 2/2
17 GGII4 Ni/E3 76 2/2
18 GGI1 Ni/E3 76 2/2
19 GGII4 Ni/E3 76 2/2
20 GGII4 Ni/E3 76 3/3
21 GGII4 Ni/E3 76 2/2
22 GGII4 Ni/E3 76 4/4
23 GGII4 Ni/E3 76 2/2
24 GGI3 Ni/E3 76 2/2
25 GGII4 Ni/E3 76 2/2
26 GGII4 Ni/E3 76 2/2
27 GGII4 Ni/E3 76 1/2
28 GGII7 SG1/D1 109 1/2
29 GGI6 Ni/E3 76 2/2
30 GGII4 Ni/E3 76 2/2
31 GGI3 SG1/D1 109 2/2
32 GGII8 Ni/E3 76 2/2
33 GGII8 Ni/E3 76 4/4
34 GGII4 Ni/E3 76 1/2
35 GGI6 SG1/D1 109 1/2
36 GGII4 Ni/E3 76 2/2

Total 18678 157/166

aNi/E3 and SG1/DI amplify the pol (ORF 1) region. Mon 381/383 amplify the cap (ORF2) region.
b'Non-identical' variants all differed by a single point mutation
r Recombinant
*Short sequences within the RdRp can be used to differentiate between strains but genotyping relies on sequencing a region of the gene encoding 
the capsid. Also, sequencing regions of either the capsid or the RdRp will not identify recombinant strains. In this study, the characterisation of the 
genes encoding the RdRp and capsid was confirmed by sequencing a region spanning the ORF1/ORF2 junction, a common recombination site (data 
not shown).
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Characterised norovirus outbreaks in two hospitals in Avon England April 2002 to March 2003Figure 2
Characterised norovirus outbreaks in two hospitals in Avon England April 2002 to March 2003. Each row depicts the follow-up 
of a single hospital unit. Colored bars represent the period between the onset of illness in the first and last case in an outbreak 
where norovirus was characterised. Each unique norovirus sequence is represented by a different color. Series of outbreaks 
meeting the definition of a cluster are circled and were tested for statistical significance.
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The approach used here was based on extremely high res-
olution; inferences about transmission events were based
on differences as small as a single nucleotide. However,
this study is not the first to suggest that very small changes
in the norovirus genome remain conserved geographically
and temporally. From Maguire et al's analysis of the
polymerase gene sequence in norovirus outbreaks in East
Anglia, UK, it was clear that most outbreaks caused in a
small geographical region were caused by a single variant
and outbreaks in different locations formed different clus-
ters [14].

These conclusions are meaningful because they are drawn
from the context of a clearly defined population. Sections
of the capsid and polymerase genes were sequenced –
more than is often used to make inferences about the
molecular epidemiology of noroviruses [5]. Furthermore,
the sequencing of multiple viruses from within outbreaks
provided a baseline to generate probabilistic statements of
how likely it is that two viruses really are from a common
source.

Despite these advantages, until a robust genotyping
scheme is adopted for noroviruses (or whole genomes are
analysed) there is always a distinct possibility that viruses
that appear closely related are not really, and viruses that
appear different by a few nucleotides in the targeted
region are, in fact, related. The primers that have been

developed for diagnostics target highly conserved regions
[31,32] – less conserved regions may be more appropriate
for these types of studies. Also, the rate of mutation is not
precisely known for noroviruses, and the error rate in
cloning/sequencing may have a strong bearing on results
when small regions are sequenced. In this study, both the
polymerase and capsid sequence were used to determine
if outbreaks were linked whereas the underlying rates of
mutation (i.e. uncertainly in the sequence data) were
based almost solely on polymerase sequence data. Fur-
thermore, two primer pairs were used to amplify different
segments of the genome. The higher levels of variation in
products of SG1/D1 primers may simply reflect greater
variability in the target sequence as compared to the Ni/
E3 primers.

One can only (or, perhaps, should only) make probabilis-
tic statements about links between incidents. The litera-
ture is full of reports that assert links between norovirus
[15-18] campylobacter [33-35] and salmonella [19-23]
incidents. Clearly, an epidemiological link reinforced
with characterisation data is highly suggestive. But what is
the probability of randomly selected strains being the
same? Background data on the diversity of circulating
strains is needed to make this statistical assessment. As we
have demonstrated here, once these data are available,
they can be used to made clear probability statements
about the likelihood that events are related.

Table 4: Probability that viruses in clusters of outbreaks differ from the population of circulating viruses (genogroup II4)

Clustera Common Sequence Common sequence in cluster/total 
sequenced specimens in cluster

Common sequence in rest of population/total 
sequenced specimens in rest of population

Fisher's exact test (P-value)

1 1A 60% (3/5) 38% (20/55) 0.36
2 1A 67% (2/3) 38% (21/55) 0.33
3 2A 88% (7/8) 12% (6/52) 0.004
4 1A 100% (4/4) 34% (19/56) 0.018

aSee Figure

Table 5: Probability that anecdotally-linked outbreaks have a common source based on epidemiological and virological sequence data 
sequence.

Pair Variantx Varianty ∆ (bases) Description of epidemiological link a b Probability of 
transmission link

1 1A 1A 0 Doctor exposed on affected ward then worked on another ward 
while ill. Outbreak began on this ward 1 day later.

1.0 0.38 (23/60) 72%

2 3D 3E 3* Transfer from nursing home into hospital (ward unspecified) 0.004 0.016 (1/60) 20%
3 1H 2M 4** Transfer from hospital to nursing home of primary case 0.001 0.016 (1/60) 6%
4 1A 1A 0 Transfer from hospital to nursing home 1.0 0.38 (23/60) 72%
5 1A 1A 0 Transfer of patient from hospital affected to unaffected wards 1.0 0.38 (23/60) 72%

a Probability that the viruses could be drawn from the same outbreak basic on genetic similarity
b Probability that second virus would randomly be drawn from the viral population
c Probability that outbreaks with anecdotal links had a transmission link: P(x|Type = M) = ca/(ca+(1-c)b)
*3 nucleotide differences in the capsid
** 1 nucleotide difference in polymerase, 3 nucleotide differences in the capsid
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Conclusion
By systematic investigation of the virological and epide-
miological characteristics of norovirus outbreaks in a hos-
pital population, we were able to investigate transmission
processes. The evidence suggests that transmission
between hospitals units does occur. Using the proposed
criteria, certain hypothesized transmission links between
outbreaks were supported while others were refuted. The
combined molecular/epidemiologic approach presented
here could be applied to other viral populations and
potentially to other pathogens for a more thorough view
of transmission.
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