37 research outputs found

    Quantum Magnetism, Spin Waves, and Light

    Full text link
    Both magnetic materials and light have always played a predominant role in information technologies, and continue to do so as we move into the realm of quantum technologies. In this course we review the basics of magnetism and quantum mechanics, before going into more advanced subjects. Magnetism is intrinsically quantum mechanical in nature, and magnetic ordering can only be explained by use of quantum theory. We will go over the interactions and the resulting Hamiltonian that governs magnetic phenomena, and discuss its elementary excitations, denominated magnons. After that we will study magneto-optical effects and derive the classical Faraday effect. We will then move on to the quantization of the electric field and the basics of optical cavities. This will allow us to understand a topic of current research denominated Cavity Optomagnonics. These notes were written as the accompanying material to the course I taught in the Summer Semester 2018 at the Friedrich-Alexander University in Erlangen. The course is intended for Master or advanced Bachelor students. Basic knowledge of quantum mechanics, electromagnetism, and solid state at the Bachelor level is assumed. Each section is followed by a couple of simple exercises which should serve as to "fill in the blanks" of what has been derived, plus specific references to bibliography, and a couple of check-points for the main concepts developed. The figures are pictures of the blackboard taken during the lecture.Comment: Class notes, revised version, typos corrected, figures adde

    Cavity optomagnonics with magnetic textures: coupling a magnetic vortex to light

    Full text link
    Optomagnonic systems, where light couples coherently to collective excitations in magnetically ordered solids, are currently of high interest due to their potential for quantum information processing platforms at the nanoscale. Efforts so far, both at the experimental and theoretical level, have focused on systems with a homogeneous magnetic background. A unique feature in optomagnonics is however the possibility of coupling light to spin excitations on top of magnetic textures. We propose a cavity-optomagnonic system with a non homogeneous magnetic ground state, namely a vortex in a magnetic microdisk. In particular we study the coupling between optical whispering gallery modes to magnon modes localized at the vortex. We show that the optomagnonic coupling has a rich spatial structure and that it can be tuned by an externally applied magnetic field. Our results predict cooperativities at maximum photon density of the order of C102\mathcal{C}\approx10^{-2} by proper engineering of these structures.Comment: 16 pages, 11 figures, published versio

    Coupled Spin-Light dynamics in Cavity Optomagnonics

    Get PDF
    Experiments during the past two years have shown strong resonant photon-magnon coupling in microwave cavities, while coupling in the optical regime was demonstrated very recently for the first time. Unlike with microwaves, the coupling in optical cavities is parametric, akin to optomechanical systems. This line of research promises to evolve into a new field of optomagnonics, aimed at the coherent manipulation of elementary magnetic excitations by optical means. In this work we derive the microscopic optomagnonic Hamiltonian. In the linear regime the system reduces to the well-known optomechanical case, with remarkably large coupling. Going beyond that, we study the optically induced nonlinear classical dynamics of a macrospin. In the fast cavity regime we obtain an effective equation of motion for the spin and show that the light field induces a dissipative term reminiscent of Gilbert damping. The induced dissipation coefficient however can change sign on the Bloch sphere, giving rise to self-sustained oscillations. When the full dynamics of the system is considered, the system can enter a chaotic regime by successive period doubling of the oscillations.Comment: Extended version, as publishe

    Magnon heralding in cavity optomagnonics

    Full text link
    In the emerging field of cavity optomagnonics, photons are coupled coherently to magnons in solid-state systems. These new systems are promising for implementing hybrid quantum technologies. Being able to prepare Fock states in such platforms is an essential step towards the implementation of quantum information schemes. We propose a magnon-heralding protocol to generate a magnon Fock state by detecting an optical cavity photon. Due to the peculiarities of the optomagnonic coupling, the protocol involves two distinct cavity photon modes. Solving the quantum Langevin equations of the coupled system, we show that the temporal scale of the heralding is governed by the magnon-photon cooperativity and derive the requirements for generating high fidelity magnon Fock states. We show that the nonclassical character of the heralded state, which is imprinted in the autocorrelation of an optical "read" mode, is only limited by the magnon lifetime for small enough temperatures. We address the detrimental effects of nonvacuum initial states, showing that high fidelity Fock states can be achieved by actively cooling the system prior to the protocol.Comment: 17 pages, 14 figures. Correction of typos, version as publishe

    Light propagation and magnon-photon coupling in optically dispersive magnetic media

    Get PDF
    Achieving strong coupling between light and matter excitations in hybrid systems is a benchmark for the implementation of quantum technologies. We recently proposed (Bittencourt, Liberal, and Viola-Kusminskiy, arXiv:2110.02984) that strong single-particle coupling between magnons and light can be realized in a magnetized epsilon-near-zero (ENZ) medium, in which magneto-optical effects are enhanced. Here we present a detailed derivation of the magnon-photon coupling Hamiltonian in dispersive media both for degenerate and nondegenerate optical modes, and show the enhancement of the coupling near the ENZ frequency. Moreover, we show that the coupling of magnons to plane-wave nondegenerate Voigt modes vanishes at specific frequencies due to polarization selection rules tuned by dispersion. Finally, we present specific results using a Lorentz dispersion model. Our results pave the way for the design of dispersive optomagnonic systems, providing a general theoretical framework for describing and engineering ENZ-based optomagnonic systems.Open access publication funded by the Max Planck Society. V.A.S.V.B. and S.V.K. acknowledge financial support from the Max Planck Society. I.L. acknowledges support from ERC Starting Grant No. 948504, Ramón y Cajal Fellowship No. RYC2018-024123-I, and Project No. RTI2018-093714-301J-I00 sponsored by MCIU/AEI/FEDER/UE

    Langevin dynamics of a heavy particle and orthogonality effects

    Get PDF
    The dynamics of a classical heavy particle moving in a quantum environment is determined by a Langevin equation which encapsulates the effect of the environment-induced reaction forces on the particle. For an open quantum system, these include a Born-Oppenheimer force, a dissipative force, and a stochastic force due to shot and thermal noise. Recently, it was shown that these forces can be expressed in terms of the scattering matrix of the system by considering the classical heavy particle as a time-dependent scattering center, allowing to demonstrate interesting features of these forces when the system is driven out of equilibrium. At the same time, it is well known that small changes in a scattering potential can have a profound impact on a fermionic system due to the Anderson orthogonality catastrophe. In this work, by calculating the Loschmidt echo, we relate Anderson orthogonality effects with the mesoscopic reaction forces for an environment that can be taken out of equilibrium. In particular, we show how the decay of the Loschmidt echo is characterized by fluctuations and dissipation in the system and discuss different quench protocols

    Engineering Entangled Coherent States of Magnons and Phonons via a Transmon Qubit

    Full text link
    We propose a scheme for generating and controlling entangled coherent states (ECS) of magnons, i.e. the quanta of the collective spin excitations in magnetic systems, or phonons in mechanical resonators. The proposed hybrid circuit architecture comprises a superconducting transmon qubit coupled to a pair of magnonic Yttrium Iron Garnet (YIG) spherical resonators or mechanical beam resonators via flux-mediated interactions. Specifically, the coupling results from the magnetic/mechanical quantum fluctuations modulating the qubit inductor, formed by a superconducting quantum interference device (SQUID). We show that the resulting radiation-pressure interaction of the qubit with each mode, can be employed to generate maximally-entangled states of magnons or phonons. In addition, we numerically demonstrate a protocol for the preparation of magnonic and mechanical Bell states with high fidelity including realistic dissipation mechanisms. Furthermore, we have devised a scheme for reading out the prepared states using standard qubit control and resonator field displacements. Our work demonstrates an alternative platform for quantum information using ECS in hybrid magnonic and mechanical quantum networks

    Quantum thermodynamics of the driven resonant level model

    Get PDF
    We present a consistent thermodynamic theory for the resonant level model in the wide band limit, whose level energy is driven slowly by an external force. The problem of defining 'system' and 'bath' in the strong coupling regime is circumvented by considering as the 'system' everything that is influenced by the externally driven level. The thermodynamic functions that are obtained to first order beyond the quasistatic limit fulfill the first and second law with a positive entropy production, successfully connect to the forces experienced by the external driving, and reproduce the correct weak coupling limit of stochastic thermodynamics.Comment: Final version as publishe
    corecore