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Experiments during the past 2 years have shown strong resonant photon-magnon coupling in microwave
cavities, while coupling in the optical regime was demonstrated very recently for the first time. Unlike with
microwaves, the coupling in optical cavities is parametric, akin to optomechanical systems. This line of research
promises to evolve into a new field of optomagnonics, aimed at the coherent manipulation of elementary magnetic
excitations in solid-state systems by optical means. In this work we derive the microscopic optomagnonic
Hamiltonian. In the linear regime the system reduces to the well-known optomechanical case, with remarkably
large coupling. Going beyond that, we study the optically induced nonlinear classical dynamics of a macrospin.
In the fast-cavity regime we obtain an effective equation of motion for the spin and show that the light field
induces a dissipative term reminiscent of Gilbert damping. The induced dissipation coefficient, however, can
change sign on the Bloch sphere, giving rise to self-sustained oscillations. When the full dynamics of the system
is considered, the system can enter a chaotic regime by successive period doubling of the oscillations.
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I. INTRODUCTION

The ability to manipulate magnetism has played histor-
ically an important role in the development of information
technologies, using the magnetization of materials to encode
information. Today’s research focuses on controlling individ-
ual spins and spin currents, as well as spin ensembles, with
the aim of incorporating these systems as part of quantum
information processing devices [1–4]. In particular, the control
of elementary excitations of magnetically ordered systems—
denominated magnons or spin waves—is highly desirable
since their frequencies are broadly tunable (ranging from
MHz to THz) [2,5] while they can have very long lifetimes,
especially for insulating materials like the ferrimagnet yttrium
iron garnet (YIG) [6]. The collective character of the mag-
netic excitations moreover render these robust against local
perturbations.

Whereas the good magnetic properties of YIG have been
known since the 1960s, it is only recently that coupling and
controlling spin waves with electromagnetic radiation in solid-
state systems has started to be explored. Pump-probe experi-
ments have shown ultrafast magnetization switching with light
[7–9], and strong photon-magnon coupling has been demon-
strated in microwave cavity experiments [10–18], including the
photon-mediated coupling between a superconducting qubit
and a magnon mode [19]. Going beyond microwaves, this
points to the tantalizing possibility of realizing optomagnonics:
The coupled dynamics of magnons and photons in the optical
regime, which can lead to coherent manipulation of magnons
with light. The coupling between magnons and photons in
the optical regime differs from that of the microwave regime,
where resonant matching of frequencies allows for a linear
coupling: One magnon can be converted into a photon, and
vice versa [20–22]. In the optical case instead, the coupling
is a three-particle process. This accounts for the frequency
mismatch and is generally called parametric coupling. The
mechanism behind the optomagnonic coupling is the Faraday
effect, where the angle of polarization of the light changes

as it propagates through a magnetic material. Very recent
first experiments in this regime show that this is a promising
route by demonstrating coupling between optical modes and
magnons, and advances in this field are expected to develop
rapidly [23–27].

In this work we derive and analyze the basic optomagnonic
Hamiltonian that allows for the study of solid-state cavity
optomagnonics. The parametric optomagnonic coupling is
reminiscent of optomechanical models. In the magnetic case,
however, the relevant operator that couples to the optical field
is the spin, instead of the usual bosonic field representing
a mechanical degree of freedom. Whereas at small magnon
numbers the spin can be replaced by a harmonic oscillator
and the ideas of optomechanics [28] carry over directly;
for general trajectories of the spin this is not possible. This
gives rise to rich nonlinear dynamics, which is the focus of
the present work. Parametric spin-photon coupling has been
studied previously in atomic ensembles [29,30]. In this work
we focus on solid-state systems with magnetic order and
derive the corresponding optomagnonic Hamiltonian. After
obtaining the general Hamiltonian, we consider a simple model
which consists of one optical mode coupled to a homogeneous
Kittel magnon mode [31]. We study the classical dynamics
of the magnetic degrees of freedom and find magnetization
switching, self-sustained oscillations, and chaos tunable by
the light-field intensity.

The paper is ordered as follows. In Sec. II we present the
model and the optomagnonic Hamiltonian which is the basis
of our work. In Sec. II A we discuss briefly the connection
of the optomagnonic Hamiltonian derived in this work and
the one used in optomechanic systems. In Sec. II B we derive
the optomagnonic Hamiltonian from microscopics and give an
expression for the optomagnonic coupling constant in term of
material constants. In Sec. III we derive the classical coupled
equations of motion of spin and light for a homogeneous
magnon mode, in which the spin degrees of freedom can be
treated as a macrospin. In Sec. III A we obtain the effective
equation of motion for the macrospin in the fast-cavity limit
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and show that the system presents magnetization switching
and self-oscillations. We treat the full (beyond the fast-cavity
limit) optically induced nonlinear dynamics of the macrospin
in Sec. III B and follow the route to chaotic dynamics. In
Sec. IV we sketch a qualitative phase diagram of the system
as a function of coupling and light intensity and discuss the
experimental feasibility of the different regimes. An outlook
and conclusions are found in Sec. V. In the Appendixes we
give details of some of the calculations in the main text,
present more examples of nonlinear dynamics as a function
of different tuning parameters, and compare optomagnonic vs
optomechanic attractors.

II. MODEL

Further below, we derive the optomagnonic Hamiltonian
which forms the basis of our work,

H = −��â†â − ��Ŝz + �GŜxâ
†â, (1)

where â† (â) is the creation (annihilation) operator for a
cavity mode photon. We work in a frame rotating at the
laser frequency ωlas, and � = ωlas − ωcav is the detuning with
respect to the optical cavity frequency ωcav. Equation (1)
assumes a magnetically ordered system with (dimensionless)
macrospin S = (Sx,Sy,Sz), with magnetization axis along ẑ,
and a precession frequency �, which can be controlled by an
external magnetic field [32]. The coupling between the optical
field and the spin is given by the last term in Eq. (1), where we
assumed (see below) that light couples only to the x component
of the spin, as shown in Fig. 1. The coefficient G denotes the
parametric optomagnonic coupling. We derive it in terms of
the Faraday rotation, which is a material-dependent constant.
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FIG. 1. Schematic configuration of the model considered. (a)
Optomagnonic cavity with homogeneous magnetization along the
z axis and a localized optical mode with circular polarization in the
y-z plane. (b) The homogeneous magnon mode couples to the optical
mode with strength G. (c) Representation of the magnon mode as a
macroscopic spin on the Bloch sphere, whose dynamics is controlled
by the coupling to the driven optical mode.

A. Relation to optomechanics

Close to the ground state, for deviations such that
δS � S (with S = |S|), we can treat the spin in the usual
way as a harmonic oscillator, Ŝx ≈ √

S/2(b̂ + b̂†), with
[b̂,b̂†] = 1. Then the optomagnonic interaction �GŜxâ

†â ≈
�G

√
S/2â†â(b̂ + b̂†) becomes formally equivalent to the well-

known optomechanical interaction [28], with bare coupling
constant g0 = G

√
S/2. All the phenomena of optomechanics

apply, including the “optical spring” (here, light-induced
changes of the magnon precession frequency) and opto-
magnonic cooling at a rate �opt, and the formulas (as reviewed
in Ref. [28]) can be taken over directly. All these effects depend
on the light-enhanced coupling g = g0α, where α = √

nphot

is the cavity light amplitude. For example, in the sideband-
resolved regime (κ � �, where κ is the optical cavity decay
rate) one would have �opt = 4g2/κ . If g > κ , one enters
the strong-coupling regime, where the magnon mode and
the optical mode hybridize and where coherent-state transfer
is possible. A Hamiltonian of the form of Eq. (1) is also
encountered for light-matter interaction in atomic ensembles
[29], and its explicit connection to optomechanics in this case
was discussed previously in Ref. [30]. In contrast to such
noninteracting spin ensembles, the confined magnon mode
assumed here can be frequency separated from other magnon
modes.

B. Microscopic magneto-optical coupling G

In this section we derive the Hamiltonian presented in
Eq. (1) starting from the microscopic magneto-optical effect in
Faraday-active materials. The Faraday effect is captured by an
effective permittivity tensor that depends on the magnetization
M in the sample. We restrict our analysis to nondispersive
isotropic media and linear response in the magnetization
and relegate magnetic linear birefringence effects which are
quadratic in M (denominated the Cotton-Mouton or Voigt
effect) for future work [5,33]. In this case, the permittivity
tensor acquires an antisymmetric imaginary component and
can be written as εij (M)=ε0(εδij − if

∑
k εijkMk), where ε0

(ε) is the vacuum (relative) permittivity, εijk the Levi-Civita
tensor, and f a material-dependent constant [33] (here and in
what follows, Latin indices indicate spatial components). The
Faraday rotation per unit length,

θF = ωf Ms

2c
√

ε
, (2)

depends on the frequency ω, the vacuum speed of light c,
and the saturation magnetization Ms . The magneto-optical
coupling is derived from the time-averaged energy Ū =
1
4

∫
dr

∑
ij E∗

i (r,t)εijEj (r,t), using the complex representa-
tion of the electric field, (E + E∗)/2. Note that Ū is real since
εij is Hermitian [5,33]. The magneto-optical contribution is

ŪMO = − i

4
ε0f

∫
dr M(r) · [E∗(r) × E(r)]. (3)

This couples the magnetization to the spin angular momentum
density of the light field. Quantization of this expression
leads to the optomagnonic coupling Hamiltonian. A similar
Hamiltonian is obtained in atomic ensemble systems when
considering the electric dipolar interaction between the light
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field and multilevel atoms, where the spin degree of freedom
[associated with M(r) in our case] is represented by the atomic
hyperfine structure [29]. The exact form of the optomagnonic
Hamiltonian will depend on the magnon and optical modes.
In photonic crystals, it has been demonstrated that optical
modes can be engineered by nanostructure patterning [34],
and magnonic-crystals design is a matter of intense current
research [3]. The electric field is easily quantized, Ê(+)(r,t) =∑

β Eβ(r)âβ(t), where Eβ(r) indicates the βth eigenmode of
the electric field (eigenmodes are indicated with greek letters
in what follows). The magnetization requires more careful
consideration, since M(r) depends on the local spin operator
which, in general, cannot be written as a linear combination of
bosonic modes. There are, however, two simple cases: (i) small
deviations of the spins, for which the Holstein-Primakoff
representation is linear in the bosonic magnon operators, and
(ii) a homogeneous Kittel mode M(r) = M with macrospin
S. In the following we treat the homogeneous case to capture
nonlinear dynamics. From Eq. (3) we then obtain the coupling
Hamiltonian ĤMO = �

∑
jβγ ŜjG

j

βγ â
†
β âγ , with

G
j

βγ = −i
ε0f Ms

4�S

∑
mn

εjmn

∫
drE∗

βm(r)Eγn(r), (4)

where we replaced Mj/Ms = Ŝj /S with S, the extensive total
spin (scaling like the mode volume). One can diagonalize the
Hermitian matrices Gj , though generically not simultaneously.
In the present work, we treat the conceptually simplest case
of a strictly diagonal coupling to some optical eigenmodes
(Gj

ββ �= 0 but G
j

αβ = 0). This is precluded only if the optical
modes are both time-reversal invariant (Eβ real-valued) and
nondegenerate. In all the other cases, a basis can be found in
which this is valid. For example, a strong static Faraday effect
will turn optical circular polarization modes into eigenmodes.
Alternatively, degeneracy between linearly polarized modes
implies we can choose a circular basis.

Consider circular polarization (R and L) in the y-z plane,
such that Gx is diagonal while Gy = Gz = 0. Then we find

Gx
LL = −Gx

RR = G = 1

S

c θF

4
√

ε
ξ, (5)

where we used Eq. (2) to express the coupling via the Faraday
rotation θF , and where ξ is a dimensionless overlap factor
that reduces to 1 if we are dealing with plane waves (see
Appendix A). Thus, we obtain the coupling Hamiltonian
HMO = �GŜx(â†

LâL − â
†
RâR). This reduces to Eq. (1) if the

incoming laser drives only one of the two circular polariza-
tions.

The coupling G gives the magnon precession frequency
shift per photon. It decreases for larger magnon mode
volume, in contrast to GS, which describes the overall
optical shift for saturated spin (Sx = S). For YIG, with
ε ≈ 5 and θF ≈ 200◦ cm−1 [5,35], we obtain GS ≈ 1010 Hz
(taking ξ = 1), which can easily become comparable to the
precession frequency �. The ultimate limit for the magnon
mode volume is set by the optical wavelength, ∼(1 μm)3,
which yields S ∼ 1010. Therefore, G ≈ 1 Hz, whereas the
coupling to a single magnon would be remarkably large:
g0 = G

√
S/2 ≈ 0.1 MHz. This provides a strong incentive

for designing small magnetic structures, by analogy to the

scaling of piezoelectrical resonators [36]. Conversely, for a
macroscopic volume of (1 mm)3, with S ∼ 1019, this reduces
to G ≈ 10−9 Hz and g0 ≈ 10 Hz.

III. SPIN DYNAMICS

The coupled Heisenberg equations of motion are obtained
from the Hamiltonian in Eq. (1) by using [â,â†] = 1, [Ŝi ,Ŝj ] =
iεijkŜk . We next focus on the classical limit, where we replace
the operators by their expectation values:

ȧ = −i(GSx − �)a − κ

2
(a − αmax),

Ṡ = (
Ga∗a ex − � ez

) × S + ηG

S
(Ṡ × S). (6)

Here we introduced the laser amplitude αmax and the in-
trinsic spin Gilbert damping [37], characterized by ηG, due
to phonons and defects (ηG ≈ 10−4 for YIG [38]). After
rescaling the fields (see Appendix B), we see that the classical
dynamics is controlled by only five dimensionless parameters:
GS
�

,
Gα2

max
�

, �
�

, κ
�
, ηG. These are independent of � as expected

for classical dynamics.
In the following we study the nonlinear classical dynamics

of the spin, and in particular we treat cases where the spin
can take values on the whole Bloch sphere and therefore
differs significantly from a harmonic oscillator, deviating
from the optomechanics paradigm valid for δS � S. The
optically induced tilt of the spin can be estimated from
Eq. (6) as δS/S = G|a|2/� ∼ Gα2

max/� = Bαmax/�, where
Bαmax = Gα2

max is an optically induced effective magnetic field.
We would expect therefore unique optomagnonic behavior
(beyond optomechanics) for large-enough light intensities,
such that Bαmax is of the order of or larger than the precession
frequency �. We show, however, that, in the case of blue
detuning, even small light intensity can destabilize the original
magnetic equilibrium of the uncoupled system, provided that
the intrinsic Gilbert damping is small.

A. Fast-cavity regime

As a first step we study a spin which is slow compared to
the cavity, where GṠx � κ2. In that case we can expand the
field a(t) in powers of Ṡx and obtain an effective equation of
motion for the spin by integrating out the light field. We write
a(t) = a0(t) + a1(t) + · · · , where the subscript indicates the
order in Ṡx . From the equation for a(t), we find that a0 fulfills
the instantaneous equilibrium condition

a0(t) = κ

2
αmax

1
κ
2 − i[� − GSx(t)]

, (7)

from which we obtain the correction a1:

a1(t) = − 1
κ
2 − i(� − GSx)

∂a0

∂Sx

Ṡx. (8)

To derive the effective equation of motion for the spin, we
replace |a|2 ≈ |a0|2 + a∗

1a0 + a∗
0a1 in Eq. (6), which leads to

Ṡ = Beff × S + ηopt

S
(Ṡx ex × S) + ηG

S
(Ṡ × S). (9)
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Here Beff = −�ez + Bopt, where Bopt(Sx) = G|a0|2 ex acts as
an optically induced magnetic field. The second term is remi-
niscent of Gilbert damping, but with spin-velocity component
only along ex . Both the induced field Bopt and the dissipation
coefficient ηopt depend explicitly on the instantaneous value of
Sx(t):

Bopt = G[(
κ
2

)2 + (� − GSx)2
](κ

2
αmax

)2
ex, (10)

ηopt = −2GκS |Bopt| (� − GSx)[(
κ
2

)2 + (� − GSx)2
]2 . (11)

This completes the microscopic derivation of the optical
Landau-Lifshitz-Gilbert equation for the spin, an important
tool to analyze effective spin dynamics in different contexts
[39]. We consider the nonlinear adiabatic dynamics of the spin
governed by Eq. (9) below. Two distinct solutions can be found:
generation of new stable fixed points (magnetic switching) and
optomagnonic limit cycles (self-oscillations).

Given our Hamiltonian [Eq. (1)], the north pole is stable
in the absence of optomagnonic coupling; the selection of
this state is ensured by the intrinsic damping ηG > 0. By
driving the system this can change due to the energy pumped
to (or absorbed from) the spin, and the new equilibrium is
determined by Beff and ηopt when ηopt dominates over ηG.
Magnetic switching refers to the rotation of the macroscopic
magnetization by ∼π to a new fixed point near the south
pole in our model. This can be obtained for blue detuning
� > 0, in which case ηopt is negative either on the whole
Bloch sphere (when � > GS) or in a certain region, as
shown in Fig. 2(a). Similar results were obtained in the
case of spin optodynamics for cold-atom systems [30]. The
possibility of switching the magnetization direction in a
controlled way is of great interest for information processing
with magnetic memory devices, in which magnetic domains
serve as information bits [7–9]. Remarkably, we find that
for blue detuning, magnetic switching can be achieved for
arbitrary small light intensities in the case of ηG = 0. This is
due to runaway solutions near the north pole for � > 0, as
discussed in detail in Appendix C. In physical systems, the
threshold of light intensity for magnetization switching will
be determined by the extrinsic dissipation channels.

For higher intensities of the light field, limit-cycle attractors
can be found for |�| < GS, where the optically induced
dissipation ηopt can change sign on the Bloch sphere [Fig. 2(b)].
The combination of strong nonlinearity and a dissipative
term which changes sign leads the system into self-sustained
oscillations. The crossover between fixed-point solutions and
limit-cycle attractors is determined by a balance between the
detuning and the light intensity, as discussed in Appendix C.
Limit-cycle attractors require Bαmax/� > |�|/GS [note that
from (11) Bopt ∼ Bαmax if κ 	 (� − GS)].

We note that for both examples shown in Fig. 2, for the
chosen parameters we have ηopt 	 ηG in the case of YIG,
and hence taking ηG = 0 is a very good approximation. More
generally, from Eqs. (10) we estimate ηopt ∼ GSBopt/κ

3 and
therefore we can safely neglect ηG for (αmaxG)2S 	 ηGκ3.
The qualitative results (limit cycle, switching) survive up to
ηopt � ηG, although quantitatively modified as ηG is increased:

(a)

(b)

y

z

x

FIG. 2. Spin dynamics (fast-cavity limit) at blue detuning � = �

and fixed GS/� = 2, κ/� = 5, ηG = 0. The left column depicts
the trajectory (green solid line) of a spin (initially pointing near the
north pole) on the Bloch sphere. The color scale indicates the optical
damping ηopt. The right column shows a stereographic projection of
the spin’s trajectory (red solid line). The black dotted line indicates
the equator (invariant under the mapping), while the north pole is
mapped to infinity. The stream lines of the spin flow are also depicted
(blue arrows). (a) Magnetization switching behavior for light intensity
Gα2

max/� = 0.36. (b) Limit-cycle attractor for larger light intensity
Gα2

max/� = 0.64.

For example, the size of the limit cycle would change, and there
would be a threshold intensity for switching.

B. Full nonlinear dynamics

The nonlinear system of Eq. (6) presents even richer behav-
ior when we leave the fast-cavity regime. For limit cycles near
the north pole, when δS � S, the spin is well approximated
by a harmonic oscillator, and the dynamics is governed by
the attractor diagram established for optomechanics [40]. In
contrast, larger limit cycles will display novel features unique
to optomagnonics, on which we focus here.

Beyond the fast-cavity limit, we can no longer give
analytical expressions for the optically induced magnetic field
and dissipation. Moreover, we cannot define a coefficient ηopt

since an expansion in Ṡx is not justified. We therefore resort
to numerical analysis of the dynamics. Figure 3 shows a route
to chaos by successive period doubling, upon decreasing the
cavity decay κ . This route can be followed in detail as a
function of any selected parameter by plotting the respective
bifurcation diagram. This is depicted in Fig. 4. The plot shows
the evolution of the attractors of the system as the light intensity
is increased. The figure shows the creation and expansion of
a limit cycle from a fixed point near the south pole, followed
by successive period doubling events and finally entering into
a chaotic region. At high intensities, a limit cycle can coexist
with a chaotic attractor. For even bigger light intensities, the
chaotic attractor disappears and the system precesses around
the ex axis, as a consequence of the strong optically induced
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FIG. 3. Full nonlinear spin dynamics and route to chaos for
GS/� = 3 and Gα2

max/� = 1 (ηG = 0). The system is blue detuned
by � = � and the dynamics, after a transient, takes place in
the southern hemisphere. The solid red curves represent the spin
trajectory after the initial transient on the Bloch sphere for (a)
κ/� = 3, (b) κ/� = 2, (c) κ/� = 0.9, (d) κ/� = 0.5. (e) Sz

projection as a function of time for the chaotic case κ/� = 0.5.

magnetic field. Similar bifurcation diagrams are obtained by
varying either GS/� or the detuning �/� (see Appendix D).

IV. DISCUSSION

We can now construct a qualitative phase diagram for
our system. Specifically, we have explored the qualitative
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FIG. 4. Bifurcation density plot for GS/� = 3 and κ/� = 1 at
� = � (ηG = 0), as a function of light intensity. We plot the Sz

values attained at the turning points (Ṡz = 0). For other possible
choices (e.g., Ṡx = 0) the overall shape of the bifurcation diagram is
changed, but the bifurcations and chaotic regimes remain at the same
light intensities. For the plot, 30 different random initial conditions
were taken.
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FIG. 5. Phase diagram for blue detuning with � = �, as a func-
tion of the inverse coupling strength �/GS and the optically induced
field Bαmax/� = Gα2

max/�. Boundaries are qualitative. Switching, in
white, refers to a fixed-point solution with the spin pointing near the
south pole. Limit cycles in the xy plane are shaded in blue, and they
follow the optomechanical attractor diagram discussed in Ref. [40].
For higher Bαmax , chaos can ensue. Orange denotes the parameter
space in which limit cycles deviate markedly from optomechanical
predictions. These are not in the xy plane and also undergo period
doubling, leading to chaos. In red is depicted the area where pockets
of chaos can be found. For large Bαmax/�, the limit cycles are in the
yz plane. In the case of red detuning � = −�, the phase diagram
remains as is, except that instead of switching there is a fixed point
near the north pole.

behavior (fixed points, limit cycles, chaos, etc.) as a function of
optomagnonic coupling and light intensity. These parameters
can be conveniently rescaled to make them dimensionless. We
chose to consider the ratio of magnon precession frequency
to coupling, in the form �/GS. Furthermore, we express the
light intensity via the maximal optically induced magnetic field
Bαmax = Gα2

max. The dimensionless coupling strength, once
the material of choice is fixed, can be tuned via an external
magnetic field which controls the precession frequency �. The
light intensity can be controlled by the laser.

We start by considering blue detuning; this is shown in
Fig. 5. The “phase diagram” is drawn for � = �, and we
set κ = � and ηG = 0. We note that some of the transi-
tions are rather crossovers (“optomechanical limit cycles” vs
“optomagnonic limit cycles”). In addition, the other “phase
boundaries” are only approximate, obtained from direct
inspection of numerical simulations. These are not intended
to be exact and are qualitatively valid for departures of the set
parameters, if not too drastic; for example, increasing κ will
lead eventually to the disappearance of the chaotic region.

As the diagram shows, there is a large range of parameters
that lead to magnetic switching, depicted in white. This area is
approximately bounded by the condition Bαmax/� � �/GS,
which in Fig. 5 corresponds to the diagonal since we took
� = �. This condition is approximate since it was derived
in the fast-cavity regime; see Appendix C. As discussed
in Sec. III, magnetic switching should be observable in
experiments even for small light intensity in the case of blue
detuning, provided that all nonoptical dissipation channels are
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small. The caveat of low intensity is a slow switching time.
For Bαmax/� � �/GS, the system can go into self-oscillations
and even chaos. For optically induced fields much smaller than
the external magnetic field, Bαmax � � we expect trajectories
of the spin in the xy plane, precessing around the external
magnetic field along ez and therefore the spin dynamics (after
a transient) is effectively two-dimensional. This is depicted
by the blue-shaded area in Fig. 5. These limit cycles are
governed by the optomechanical attractor diagram presented in
Ref. [40], as we show in Appendix E. There is large parameter
region in which the optomagnonic limit cycles deviate from
the optomechanical attractors. This is marked by orange in
Fig. 5. As the light intensity is increased, for �/GS � 1 the
limit cycles remain approximately confined to the xy plane
but exhibit deviations from optomechanics. This approximate
confinement of the trajectories to the xy plane at large Bαmax/�

(Bαmax/� � 0.5 for � = �) can be understood qualitatively by
looking at the expression of the induced magnetic field Bopt

deduced in the fast cavity limit, Eq. (10). Since we consider
� = �, �/GS � 1 implies GS 	 �. In this limit, Bopt/�

can become very small and the spin precession is around the
ez axis. For moderate Bαmax/� and �/GS, the limit cycles are
tilted and precessing around an axis determined by the effective
magnetic field, a combination of the optical induced field and
the external magnetic field. Blue detuning causes these limit
cycles to occur in the southern hemisphere. Period doubling
leads eventually to chaos. The region where pockets of chaos
can be found is represented by red in the phase diagram. For
large light intensity, such that Bαmax 	 �, the optical field dom-
inates and the effective magnetic field is essentially along the ex
axis. The limit cycle is a precession of the spin around this axis.

According to our results, optomagnonic chaos is attained
for values of the dimensionless coupling GS/� ∼ 1–10 and
light intensities Gα2

max/� ∼ 0.1–1. This implies a number
of circulating photons similar to the number of locked spins
in the material, which scales with the cavity volume. This
therefore imposes a condition on the minimum circulating
photon density in the cavity. For YIG with characteristic
frequencies � ∼ 1–10 GHz, the condition on the coupling
is easily fulfilled (remember GS = 10 GHz as calculated
above). However, the condition on the light intensity implies a
circulating photon density of ∼108–109 photons/μm3, which
is outside of the current experimental capabilities, limited by
the power that a typical microcavity can support (around ∼105

photons/μm3). On the other hand, magnetic switching and
self-sustained oscillations of the optomechanical type (but
taking place in the southern hemisphere) can be attained for
low powers, assuming all external dissipation channels are
kept small. While self-sustained oscillations and switching
can be reached in the fast-cavity regime, more complex
nonlinear behavior such as period doubling and chaos requires
approaching sideband resolution. For YIG the examples in
Figs. 3 and 4 correspond to a precession frequency � ≈
3 × 109 Hz (Appendix D), whereas κ can be estimated to be
∼1010 Hz, taking into account the light absorption factor for
YIG (∼0.3 cm−1) [35].

For red detuning � < 0, the regions in the phase diagram
remain the same, except that instead of magnetic switching,
the solutions in this parameter range are fixed points near
the north pole. This can be seen by the symmetry of the

problem: Exchanging � → −� together with ex → −ex and
ez → −ez leaves the problem unchanged. The limit cycles
and trajectories follow also this symmetry, and in particular
the limit cycles in the xy plane remain invariant.

V. OUTLOOK

The observation of the spin dynamics predicted here will
be a sensitive probe of the basic cavity optomagnonic model,
beyond the linear regime. Our analysis of the optomagnonic
nonlinear Gilbert damping could be generalized to more
advanced settings, leading to optomagnonic reservoir engi-
neering (e.g., two optical modes connected by a magnon
transition). Although the nonlinear dynamics presented here
requires light intensities outside of the current experimental
capabilities for YIG, it should be kept in mind that our model
is the simplest case for which highly nonlinear phenomena
are present. Increasing the model complexity, for example
by allowing for multiple-mode coupling, could result in a
decreased light-intensity requirement. Materials with a higher
Faraday constant would be also beneficial. In this work we
focused on the homogeneous Kittel mode. It will be an
interesting challenge to study the coupling to magnon modes at
finite wave vector, responsible for magnon-induced dissipation
and nonlinearities under specific conditions [41–43]. The
limit-cycle oscillations can be seen as “optomagnonic lasing,”
analogous to the functioning principle of a laser where energy
is pumped and the system settles in a steady state with a
characteristic frequency, and also discussed in the context of
mechanics (“cantilaser” [44]). These oscillations could serve
as a novel source of traveling spin waves in suitable geometries,
and the synchronization of such oscillators might be employed
to improve their frequency stability. We may see the design
of optomagnonic crystals and investigation of optomagnonic
polaritons in arrays. In addition, future cavity optomagnonics
experiments will make it possible to address the completely
novel regime of cavity-assisted coherent optical manipulation
of nonlinear magnetic textures, like domain walls, vortices,
or skyrmions, or even nonlinear spatiotemporal light-magnon
patterns. In the quantum regime, prime future opportunities
will be the conversion of magnons to photons or phonons, the
entanglement between these subsystems, and their applications
to quantum communication and sensitive measurements.

Note added. We note that different aspects of optomagnonic
systems have been investigated in a related work done
simultaneously [45].
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APPENDIX A: OPTOMAGNONIC COUPLING G
FOR PLANE WAVES

In this section we calculate explicitly the optomagnonic
coupling presented in Eq. (5) for the case of plane-wave mode
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functions for the electric field. We choose for definiteness
the magnetization axis along the ẑ axis and consider the case
Gxβγ �= 0. The Hamiltonian HMO is then diagonal in the the
basis of circularly polarized waves, eR/L = 1√

2
(ey ∓ iez). The

rationale behind choosing the coupling direction perpendicu-
lar to the magnetization axis is to maximize the coupling to the
magnon mode, that is, to the deviations of the magnetization
with respect to the magnetization axis. The relevant spin oper-
ator is therefore Ŝx , which represents the flipping of a spin. In
the case of plane waves, we quantize the electric field according

to Ê+(−)(r,t) = +(−)i
∑

j
ej

√
�ωj

2ε0εV
â

(†)
j (t)e+(−)ikj·r , where V

is the volume of the cavity, kj the wave vector of mode j

and we have identified the positive and negative frequency
components of the field as E → Ê+, E∗ → Ê−. The factor
of ε0ε in the denominator ensures the normalization �ωj =
ε0ε〈j | ∫ d3r|E(r)|2|j 〉 − ε0ε〈0| ∫ d3r|E(r)|2|0〉, which corre-
sponds to the energy of a photon in state |j 〉 above the vacuum
|0〉. For two degenerate (R/L) modes at frequency ω, using
Eq. (2) we see that the frequency dependence cancels out and
we obtain the simple form for the optomagnonic Hamiltonian
HMO = �GŜx(â†

LâL − â
†
RâR), with G = 1

S
c θF

4
√

ε
. Therefore, the

overlap factor ξ = 1 in this case.

APPENDIX B: RESCALED FIELDS AND LINEARIZED
DYNAMICS

To analyze Eq. (6) it is convenient to rescale the fields
such that a = αmaxa

′ and S = SS′ and measure all times and
frequencies in �. We obtain the rescaled equations of motion
(time derivatives are now with respect to t ′ = �t):

ȧ′ = −i

(
GS

�
S ′

x − �

�

)
a′ − κ

2�
(a′ − 1), (B1)

Ṡ′ =
(

Gα2
max

�
|a′|2ex − ez

)
× S′ + ηG

S

(
Ṡ′ × S′). (B2)

If we linearize the spin dynamics (around the north pole,
e.g.), we should recover the optomechanics behavior. In this
section we ignore the intrinsic Gilbert damping term. We set
approximately S′ ≈ (S ′

x,S
′
y,1)T and from Eq. (B1) we obtain

Ṡ ′
x = S ′

y, (B3)

Ṡ ′
y = − Gα2

max

�
|a′|2 − S ′

x. (B4)

We can now choose to rescale further, via S ′
x =

(αmax/
√

S)S ′′
x and likewise for S ′

y . We obtain the following
spin-linearized equations of motion:

Ṡ ′′
x = S ′′

y , (B5)

Ṡ ′′
y = −G

√
Sαmax

�
|a′|2 − S ′′

x , (B6)

ȧ′ = −i

(
G

√
Sαmax

�
S ′′

x − �

�

)
a′ − κ

2�
(a′ − 1). (B7)

This means that the number of dimensionless parameters
has been reduced by one, since the two parameters initially

involving G, S, and αmax have all been combined into

G
√

Sαmax

�
. (B8)

In other words, for S ′
x,y = Sx,y/S � 1, the dynamics

should only depend on this combination, consistent with the
optomechanical analogy valid in this regime, as discussed in
the main text (where we argued based on the Hamiltonian).

APPENDIX C: SWITCHING IN THE FAST-CAVITY LIMIT

From Eq. (9) in the weak dissipation limit (ηG � 1) we
obtain

Ṡx =�Sy,

Ṡy = − SzBopt − �Sx − ηopt

S
ṠxSz,

from where we obtain an equation of motion for Sx . We are
interested in studying the stability of the north pole once the
driving is turned on. Hence, we set Sz = S,

S̈x = −�SBopt − �2Sx − ηopt�Ṡx,

and we consider small deviations δSx of Sx from the equi-
librium position that satisfies S0

x = −SBopt/�, where Bopt is
evaluated at S0

x . To linear order we obtain

¨δSx = −�

(
� + S

∂Bopt

∂Sx

)
δSx + 2GSκ�Bopt

× (� + GSBopt/�)

[(κ/�)2 + (� + GSBopt/�)2]2
˙δSx.

We see that the dissipation coefficient for blue detuning
(� > 0) is always negative, giving rise to runaway solutions.
Therefore, the solutions near the north pole are always unstable
under blue detuning, independent of the light intensity. These
trajectories run to a fixed point near the south pole, which
accepts stable solutions for � > 0 (switching) or to a limit
cycle. Near the south pole, Sz = −S, S0

x = SBopt/�, and

¨δSx = −�

(
� − S

∂Bopt

∂Sx

)
δSx − 2GSκ�Bopt

× (� − GSBopt/�)

[(κ/�)2 + (� − GSBopt/�)2]2
˙δSx.

Therefore, for � > GSBopt/� there are stable fixed points,
while in the opposite case there are also runaway solutions that
are caught in a limit cycle. For red detuning, � → −� and
the roles of south and north pole are interchanged.

APPENDIX D: NONLINEAR DYNAMICS

In this section we give more details on the full nonlinear
dynamics described in the main text. In Figs. 3 and 4 of
the main text we chose a relative coupling GS/� = 3,
around which a chaotic attractor is found. With our estimated
GS ≈ 1010 Hz for YIG, this implies a precession frequency
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FIG. 6. Bifurcation density plot for Gα2
max/� = 1 and κ/� = 1

at � = � (ηG = 0), as a function of the relative coupling strength
GS/�. The dash-dotted blue line indicates GS/� = 3, for compar-
ison with Fig. 4. As in the main text, the points (obtained after the
transient) are given by plotting the values of Sz attained whenever the
trajectory fulfills the turning point condition Ṡz = 0, for 20 different
random initial conditions.

� ≈ 3 × 109 Hz. In Fig. 3 the chaotic regime is reached at
κ ≈ �/2, with Gα2

max/� = 1, which implies α2
max ≈ S/3, that

is, a number of photons circulating in the (unperturbed) cavity
of the order of the number of locked spins and hence scaling
with the cavity volume. Bigger values of the cavity decay rate
are allowed for attaining chaos at the same frequency, at the
expense of more photons in the cavity, as can be deduced from
Fig. 4, where we took κ = �. On the other hand, we can think
of varying the precession frequency � by an applied external
magnetic field and explore the nonlinearities by tuning GS/�

in this way (note that GS is a material constant). This is done in
Fig. 6. Alternatively, the nonlinear behavior can be controlled
by varying the detuning �, as shown in Fig. 7.

1.0 1.5
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-1

-2

S
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n 
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n
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z
/Ω

Δ/ΩDetuning

FIG. 7. Bifurcation density plot for GS/� = 3, Gα2
max/� = 1

and κ/� = 1 (ηG = 0), as a function of the detuning �/�. The
dotted blue line indicates �/� = 1, for comparison with Fig. 4.

APPENDIX E: APPENDIX E: RELATION TO THE
OPTOMECHANICAL ATTRACTORS

In this Appendix we show that the optomagnonic system
includes the higher-order nonlinear attractors found in optome-
chanics as a subset in parameter space.

In optomechanics, the high-order nonlinear attractors are
self-sustained oscillations with amplitudes A such that the
optomechanical frequency shift GA is a multiple of the
mechanical frequency �. Translating to our case, this means
GδS ∼ n�. Since δS/S ∼ G|αmax|2/� = Bαmax/�, we ob-
tain the condition

GS

�

Bαmax

�
∼ n (E1)

for observing these attractors. We can vary Bαmax according to
Eq. (E1). For �/GS � 1 we are in the limit of small Bαmax/�

and we expect limit cycles precessing along ez as discussed in
Sec. IV. In Fig. 8 the attractor diagram obtained by imposing

5

10

15

20

2015105
GS/Ω

G
S

x
/Ω

10

30

20

20 3010 40
GS/Ω

G
S

x
/Ω

FIG. 8. Attractor diagram for � = 1.5� and κ/� = 1 with
condition G2S|αmax|2 = n�2. Top, n = 1; bottom, n = 10. We plot
the Sx values attained at the turning points (Ṡx = 0) for Sx > 0. The
diagram is symmetric for Sx < 0, as expected for a limit cycle on
the Bloch sphere. The diagram at the top coincides to a high degree
of approximation with the predictions obtained for optomechanical
systems (i.e., replacing the spin by a harmonic oscillator). In contrast,
this is no longer the case for the diagram at the bottom, which involves
higher light intensities.
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condition (E1) is plotted. Since the trajectories are in the
xy plane, we plot the inflection point of the coordinate Sx .
We expect GSx/� evaluated at the inflection point, which
gives the amplitude of the limit cycle, to coincide with the
optomechanic attractors for small Bαmax/� and hence flat
lines at the expected amplitudes (as calculated in Ref. [40])
as GS/� increases. Relative evenly spaced limit cycles
increasing in number as larger values of GS/� are considered
are observed, in agreement with Ref. [40]. Remarkably,
these limit cycles attractors are found on the whole Bloch

sphere, and not only near the north pole, where the harmonic
approximation is strictly valid. These attractors are reached
by allowing initial conditions on the whole Bloch sphere. For
n = 1 (Fig. 8, top), switching is observed up to GS/� ∼ 4 and
then perfect optomechanic behavior. For higher values of n,
deviations from the optomechanical behavior are observed for
small GS/� [implying large Bαmax/� according to Eq. (E1)]
and large-amplitude limit cycles, as compared to the size of
the Bloch sphere. An example is shown in Fig. 8, bottom, for
n = 10.
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