5,960 research outputs found

    Decreased myocardial injury and improved contractility after administration of a peptide derived against the alpha-interacting domain of the L-type calcium channel.

    Get PDF
    BackgroundMyocardial infarction remains the leading cause of morbidity and mortality associated with coronary artery disease. The L-type calcium channel (IC a-L) is critical to excitation and contraction. Activation of the channel also alters mitochondrial function. Here, we investigated whether application of a alpha-interacting domain/transactivator of transcription (AID-TAT) peptide, which immobilizes the auxiliary ÎČ2 subunit of the channel and decreases metabolic demand, could alter mitochondrial function and myocardial injury.Methods and resultsTreatment with AID-TAT peptide decreased ischemia-reperfusion injury in guinea-pig hearts ex vivo (n=11) and in rats in vivo (n=9) assessed with uptake of nitroblue tetrazolium, release of creatine kinase, and lactate dehydrogenase. Contractility (assessed with catheterization of the left ventricle) was improved after application of AID-TAT peptide in hearts ex vivo (n=6) and in vivo (n=8) up to 12 weeks before sacrifice. In search of the mechanism for the effect, we found that intracellular calcium ([Ca(2+)]i, Fura-2), superoxide production (dihydroethidium fluorescence), mitochondrial membrane potential (Κm, JC-1 fluorescence), reduced nicotinamide adenine dinucleotide production, and flavoprotein oxidation (autofluorescence) are decreased after application of AID-TAT peptide.ConclusionsApplication of AID-TAT peptide significantly decreased infarct size and supported contractility up to 12 weeks postcoronary artery occlusion as a result of a decrease in metabolic demand during reperfusion

    Quantum nondemolition measurements of a particle in electric and gravitational fields

    Get PDF
    In this work we obtain a nondemolition variable for the case in which a charged particle moves in the electric and gravitational fields of a spherical body. Afterwards we consider the continuous monitoring of this nondemolition parameter, and calculate along the ideas of the so called restricted path integral formalism, the corresponding propagator. Using these results the probabilities associated with the possible measurement outputs are evaluated. The limit of our results, as the resolution of the measuring device goes to zero, is analyzed, and the dependence of the corresponding propagator upon the strength of the electric and gravitational fields are commented. The role that mass plays in the corresponding results, and its possible connection with the equivalence principle at quantum level, are studied.Comment: Accepted in International Journal of Modern Physics D, 14 page

    Dynamical Generation of Noiseless Quantum Subsystems

    Get PDF
    We present control schemes for open quantum systems that combine decoupling and universal control methods with coding procedures. By exploiting a general algebraic approach, we show how appropriate encodings of quantum states result in obtaining universal control over dynamically-generated noise-protected subsystems with limited control resources. In particular, we provide an efficient scheme for performing universal encoded quantum computation in a wide class of systems subjected to linear non-Markovian quantum noise and supporting Heisenberg-type internal Hamiltonians.Comment: 4 pages, no figures; REVTeX styl

    Pulse Control of Decoherence in a Qubit Coupled with a Quantum Environment

    Full text link
    We study the time evolution of a qubit linearly coupled with a quantum environment under a sequence of short pi pulses. Our attention is focused on the case where qubit-environment interactions induce the decoherence with population decay. We assume that the environment consists of a set of bosonic excitations. The time evolution of the reduced density matrix for the qubit is calculated in the presence of periodic short pi pulses. We confirm that the decoherence is suppressed if the pulse interval is shorter than the correlation time for qubit-environment interactions.Comment: 5 pages, 2figure

    Synchronized pulse control of decoherence

    Full text link
    We present a new strategy for multipulse control over decoherence. When a two-level system interacts with a reservoir characterized by a specific frequency, we find that the decoherence is effectively suppressed by synchronizing the pulse-train application with the dynamical motion of the reservoir.Comment: 14 pages, 8 figure

    Long-time electron spin storage via dynamical suppression of hyperfine-induced decoherence in a quantum dot

    Get PDF
    The coherence time of an electron spin decohered by the nuclear spin environment in a quantum dot can be substantially increased by subjecting the electron to suitable dynamical decoupling sequences. We analyze the performance of high-level decoupling protocols by using a combination of analytical and exact numerical methods, and by paying special attention to the regimes of large inter-pulse delays and long-time dynamics, which are outside the reach of standard average Hamiltonian theory descriptions. We demonstrate that dynamical decoupling can remain efficient far beyond its formal domain of applicability, and find that a protocol exploiting concatenated design provides best performance for this system in the relevant parameter range. In situations where the initial electron state is known, protocols able to completely freeze decoherence at long times are constructed and characterized. The impact of system and control non-idealities is also assessed, including the effect of intra-bath dipolar interaction, magnetic field bias and bath polarization, as well as systematic pulse imperfections. While small bias field and small bath polarization degrade the decoupling fidelity, enhanced performance and temporal modulation result from strong applied fields and high polarizations. Overall, we find that if the relative errors of the control parameters do not exceed 5%, decoupling protocols can still prolong the coherence time by up to two orders of magnitude.Comment: 16 pages, 10 figures, submitted to Phys. Rev.

    Dynamical Decoupling Using Slow Pulses: Efficient Suppression of 1/f Noise

    Get PDF
    The application of dynamical decoupling pulses to a single qubit interacting with a linear harmonic oscillator bath with 1/f1/f spectral density is studied, and compared to the Ohmic case. Decoupling pulses that are slower than the fastest bath time-scale are shown to drastically reduce the decoherence rate in the 1/f1/f case. Contrary to conclusions drawn from previous studies, this shows that dynamical decoupling pulses do not always have to be ultra-fast. Our results explain a recent experiment in which dephasing due to 1/f1/f charge noise affecting a charge qubit in a small superconducting electrode was successfully suppressed using spin-echo-type gate-voltage pulses.Comment: 5 pages, 3 figures. v2: Many changes and update

    Tracing the evolution in the iron content of the ICM

    Get PDF
    We present a Chandra analysis of the X-ray spectra of 56 clusters of galaxies at z>0.3, which cover a temperature range of 3>kT>15 keV. Our analysis is aimed at measuring the iron abundance in the ICM out to the highest redshift probed to date. We find that the emission-weighted iron abundance measured within (0.15-0.3)R_vir in clusters below 5 keV is, on average, a factor of ~2 higher than in hotter clusters, following Z(T)~0.88T^-(0.47)Z_o, which confirms the trend seen in local samples. We made use of combined spectral analysis performed over five redshift bins at 0.3>z>1.3 to estimate the average emission weighted iron abundance. We find a constant average iron abundance Z_Fe~0.25Z_o as a function of redshift, but only for clusters at z>0.5. The emission-weighted iron abundance is significantly higher (Z_Fe~0.4Z_o) in the redshift range z~0.3-0.5, approaching the value measured locally in the inner 0.15R_vir radii for a mix of cool-core and non cool-core clusters in the redshift range 0.1<z<0.3. The decrease in Z_Fe with redshift can be parametrized by a power law of the form ~(1+z)^(-1.25). The observed evolution implies that the average iron content of the ICM at the present epoch is a factor of ~2 larger than at z=1.2. We confirm that the ICM is already significantly enriched (Z_Fe~0.25Z_o) at a look-back time of 9 Gyr. Our data provide significant constraints on the time scales and physical processes that drive the chemical enrichment of the ICM.Comment: 6 pages, 6 figures, to appear in the Proceedings of "Heating vs. Cooling in Galaxies and Clusters of Galaxies", August 2006, Garching (Germany

    Pulse Control of Decoherence with Population Decay

    Full text link
    The pulse control of decoherence in a qubit interacting with a quantum environment is studied with focus on a general case where decoherence is induced by both pure dephasing and population decay. To observe how the decoherence is suppressed by periodic pi pulses, we present a simple method to calculate the time evolution of a qubit under arbitrary pulse sequences consisting of bit-flips and/or phase-flips. We examine the effectiveness of the two typical sequences: bb sequence consisting of only bit-flips, and bp sequence consisting of both bit- and phase-flips. It is shown that the effectiveness of the pulse sequences depends on a relative strength of the two decoherence processes especially when a pulse interval is slightly shorter than qubit-environment correlation times. In the short-interval limit, however, the bp sequence is always more effective than, or at least as effective as, the bb sequence.Comment: 11 pages, 7 figure
    • 

    corecore