316 research outputs found

    Statistical properties of dust far-infrared emission

    Full text link
    The description of the statistical properties of dust emission gives important constraints on the physics of the interstellar medium but it is also a useful way to estimate the contamination of diffuse interstellar emission in the cases where it is considered a nuisance. The main goals of this analysis of the power spectrum and non-Gaussian properties of 100 micron dust emission are 1) to estimate the power spectrum of interstellar matter density in three dimensions, 2) to review and extend previous estimates of the cirrus noise due to dust emission and 3) to produce simulated dust emission maps that reproduce the observed statistical properties. The main results are the following. 1) The cirrus noise level as a function of brightness has been previously overestimated. It is found to be proportional to instead of ^1.5, where is the local average brightness at 100 micron. This scaling is in accordance with the fact that the brightness fluctuation level observed at a given angular scale on the sky is the sum of fluctuations of increasing amplitude with distance on the line of sight. 2) The spectral index of dust emission at scales between 5 arcmin and 12.5 degrees is =-2.9 on average but shows significant variations over the sky. Bright regions have systematically steeper power spectra than diffuse regions. 3) The skewness and kurtosis of brightness fluctuations is high, indicative of strong non-Gaussianity. 4) Based on our characterization of the 100 micron power spectrum we provide a prescription of the cirrus confusion noise as a function of wavelength and scale. 5) Finally we present a method based on a modification of Gaussian random fields to produce simulations of dust maps which reproduce the power spectrum and non-Gaussian properties of interstellar dust emission.Comment: 13 pages, 13 figures. Accepted for publication in A&

    Detection of new point-sources in WMAP Cosmic Microwave Background (CMB) maps at high Galactic latitude. A new technique to extract point sources from CMB maps

    Full text link
    In experimental microwave maps, point-sources can strongly affect the estimation of the power-spectrum and/or the test of Gaussianity of the Cosmic Microwave Background (CMB) component. As a consequence, their removal from the sky maps represents a critical step in the analysis of the CMB data. Before removing a source, however, it is necessary to detect it and source extraction consists of a delicate preliminary operation. In the literature, various techniques have been presented to detect point-sources in the sky maps. The most sophisticated ones exploit the multi-frequency nature of the observations that is typical of the CMB experiments. These techniques have "optimal" theoretical properties and, at least in principle, are capable of remarkable performances. Actually, they are rather difficult to use and this deteriorates the quality of the obtainable results. In this paper, we present a new technique, the "weighted matched filter" (WMF), that is quite simple to use and hence more robust in practical applications. Such technique shows particular efficiency in the detection of sources whose spectra have a slope different from zero. We apply this method to three Southern Hemisphere sky regions - each with an area of 400 square degrees - of the seven years Wilkinson Microwave Anisotropy Probe (WMAP) maps and compare the resulting sources with those of the two seven-year WMAP point-sources catalogues. In these selected regions we find seven additional sources not previously listed in WMAP catalogues and discuss their most likely identification and spectral properties.Comment: Astronomy and Astrophysics, 2011, in pres

    Digital Deblurring of CMB Maps II: Asymmetric Point Spread Function

    Full text link
    In this second paper in a series dedicated to developing efficient numerical techniques for the deblurring Cosmic Microwave Background (CMB) maps, we consider the case of asymmetric point spread functions (PSF). Although conceptually this problem is not different from the symmetric case, there are important differences from the computational point of view because it is no longer possible to use some of the efficient numerical techniques that work with symmetric PSFs. We present procedures that permit the use of efficient techniques even when this condition is not met. In particular, two methods are considered: a procedure based on a Kronecker approximation technique that can be implemented with the numerical methods used with symmetric PSFs but that has the limitation of requiring only mildly asymmetric PSFs. The second is a variant of the classic Tikhonov technique that works even with very asymmetric PSFs but that requires discarding the edges of the maps. We provide details for efficient implementations of the algorithms. Their performance is tested on simulated CMB maps.Comment: 9 pages, 13 Figure

    An approach for the detection of point-sources in very high resolution microwave maps

    Full text link
    This paper deals with the detection problem of extragalactic point-sources in multi-frequency, microwave sky maps that will be obtainable in future cosmic microwave background radiation (CMB) experiments with instruments capable of very high spatial resolution. With spatial resolutions that can be of order of 0.1-1.0 arcsec or better, the extragalactic point-sources will appear isolated. The same holds also for the compact structures due to the Sunyaev-Zeldovich (SZ) effect (both thermal and kinetic). This situation is different from the maps obtainable with instruments as WMAP or PLANCK where, because of the smaller spatial resolution (approximately 5-30 arcmin), the point-sources and the compact structures due to the SZ effect form a uniform noisy background (the "confusion noise"). Hence, the point-source detection techniques developed in the past are based on the assumption that all the emissions that contribute to the microwave background can be modeled with homogeneous and isotropic (often Gaussian) random fields and make use of the corresponding spatial power-spectra. In the case of very high resolution observations such an assumption cannot be adopted since it still holds only for the CMB. Here, we propose an approach based on the assumption that the diffuse emissions that contribute to the microwave background can be locally approximated by two-dimensional low order polynomials. In particular, two sets of numerical techniques are presented containing two different algorithms each. The performance of the algorithms is tested with numerical experiments that mimic the physical scenario expected for high Galactic latitude observations with the Atacama Large Millimeter/Submillimeter Array (ALMA).Comment: Accepted for publication on "Astronomy & Astrophysics". arXiv admin note: substantial text overlap with arXiv:1206.4536 Replaced version is the accepted one and published in A&

    The Dependence of Galaxy Shape on Luminosity and Surface Brightness Profile

    Get PDF
    For a sample of 96,951 galaxies from the Sloan Digital Sky Survey Data Release 3, we study the distribution of apparent axis ratios as a function of r-band absolute magnitude and surface brightness profile type. We use the parameter fracDeV to quantify the profile type (fracDeV = 1 for a de Vaucouleurs profile; fracDeV = 0 for an exponential profile). When the apparent axis ratio q_{am} is estimated from the moments of the light distribution, the roundest galaxies are very bright (M_r \sim -23) de Vaucouleurs galaxies and the flattest are modestly bright (M_r \sim -18) exponential galaxies. When the apparent axis ratio q_{25} is estimated from the axis ratio of the 25 mag/arcsec^2 isophote, we find that de Vaucouleurs galaxies are flatter than exponential galaxies of the same absolute magnitude. For a given surface brightness profile type, very bright galaxies are rounder, on average, than fainter galaxies. We deconvolve the distributions of apparent axis ratios to find the distribution of the intrinsic short-to-long axis ratio gamma, assuming constant triaxiality T. For all profile types and luminosities, the distribution of apparent axis ratios is inconsistent with a population of oblate spheroids, but is usually consistent with a population of prolate spheroids. Bright galaxies with a de Vaucouleurs profile (M_r < -21.84, fracDeV > 0.9) have a distribution of q_{am} that is consistent with triaxiality in the range 0.4 < T < 0.8, with mean intrinsic axis ratio 0.66 < gamma < 0.69. The fainter de Vaucouleurs galaxies are best fit with prolate spheroids (T = 1) with mean axis ratio gamma = 0.51.Comment: 32 pages, 12 figures, to appear in Ap

    Digital Deblurring of CMB Maps: Performance and Efficient Implementation

    Get PDF
    Digital deblurring of images is an important problem that arises in multifrequency observations of the Cosmic Microwave Background (CMB) where, because of the width of the point spread functions (PSF), maps at different frequencies suffer a different loss of spatial resolution. Deblurring is useful for various reasons: first, it helps to restore high frequency components lost through the smoothing effect of the instrument's PSF; second, emissions at various frequencies observed with different resolutions can be better studied on a comparable resolution; third, some map-based component separation algorithms require maps with similar level of degradation. Because of computational efficiency, deblurring is usually done in the frequency domain. But this approach has some limitations as it requires spatial invariance of the PSF, stationarity of the noise, and is not flexible in the selection of more appropriate boundary conditions. Deblurring in real space is more flexible but usually not used because of its high computational cost. In this paper (the first in a series on the subject) we present new algorithms that allow the use of real space deblurring techniques even for very large images. In particular, we consider the use of Tikhonov deblurring of noisy maps with applications to {\it PLANCK}. We provide details for efficient implementations of the algorithms. Their performance is tested on Gaussian and non-Gaussian simulated CMB maps, and PSFs with both circular and elliptical symmetry. Matlab code is made available.Comment: 14 pages, 16, figures, A&A in press; high quality figures available upon request to the author
    corecore