28 research outputs found

    A recent increase in global wave power as a consequence of oceanic warming

    Get PDF
    Wind-generated ocean waves drive important coastal processes that determine flooding and erosion. Ocean warming has been one factor affecting waves globally. Most studies have focused on studying parameters such as wave heights, but a systematic, global and long-term signal of climate change in global wave behavior remains undetermined. Here we show that the global wave power, which is the transport of the energy transferred from the wind into sea-surface motion, has increased globally (0.4% per year) and by ocean basins since 1948. We also find long-term correlations and statistical dependency with sea surface temperatures, globally and by ocean sub-basins, particularly between the tropical Atlantic temperatures and the wave power in high south latitudes, the most energetic region globally. Results indicate the upper-ocean warming, a consequence of anthropogenic global warming, is changing the global wave climate, making waves stronger. This identifies wave power as a potentially valuable climate change indicator.Funding for this project was partly provided by RISKOADAPT (BIA2017-89401-R) Spanish Ministry of Science, Innovation and Universities and the ECLISEA project part of the Horizon 2020 ERANET ERA4CS (European Research Area for Climate Services) 2016 Call

    Efficient method for generating nuclear fractions from marrow stromal cells

    No full text
    Stem cells have received significant attention for their envisioned potential to treat currently unapproachable diseases. No less important is the utility of stem cells to serve as model systems of differentiation. Analyses at the transcriptome, miRNA and proteome levels have yielded valuable insights into events underlying stem cell differentiation. Proteomic analysis is often cumbersome, detecting changes in hundreds of proteins that require subsequent identification and validation. Targeted analysis of nuclear constituents would simplify proteomic studies, focusing efforts on transcription factor abundance and modification. To facilitate such studies, a simple and efficient methodology to isolate pure nuclear fractions from Marrow Stromal Cells (MSCs), a clinically relevant stem cell population, has been developed. The modified protocol greatly enhances cell disruption, yielding free nuclei without attached cell body remnants. Light and electron microscopic analysis of purified nuclei demonstrated that preparations contained predominantly intact nuclei with minimal cytoplasmic contamination. Western analysis revealed an approximately eightfold enrichment of the transcription factor CREB in the isolated nuclei over that in the starting homogenates. This simple method for isolation of highly purified nuclear fractions from stem cell populations will allow rigorous examination of nuclear proteins critical for differentiation
    corecore