11 research outputs found

    Locally commensurate charge-density wave with three-unit-cell periodicity in YBCO

    Full text link
    In order to identify the mechanism responsible for the formation of charge-density waves (CDW) in cuprate superconductors, it is important to understand which aspects of the CDW's microscopic structure are generic and which are material-dependent. Here, we show that, at the local scale probed by NMR, long-range CDW order in YBa2Cu3Oy is unidirectional with a commensurate period of three unit cells (lambda = 3b), implying that the incommensurability found in X-ray scattering is ensured by phase slips (discommensurations). Furthermore, NMR spectra reveal a predominant oxygen character of the CDW with an out-of-phase relationship between certain lattice sites but no specific signature of a secondary CDW with lambda = 6b associated with a putative pair-density wave. These results shed light on universal aspects of the cuprate CDW. In particular, its spatial profile appears to generically result from the interplay between an incommensurate tendency at long length scales, possibly related to properties of the Fermi surface, and local commensuration effects, due to electron-electron interactions or lock-in to the lattice.Comment: Original submission (revised version available upon request

    Strain-Tuning of 2D and 3D Charge-Density Waves in High-Temperature Superconducting YBa2_{2}Cu3_{3}Oy_{\rm{y}}

    Full text link
    Uniaxial pressure experiments in underdoped YBa2_{2}Cu3_{3}Oy_{\rm{y}} provide an efficient approach to the control of the competition between charge-density waves (CDWs) and superconductivity. It can enhance the correlation volume of ubiquitous short-range CDW correlations and above a critical value, even induce a long-range CDW order otherwise only accessible through the suppression of superconductivity by large magnetic fields. Here we use x-ray diffraction with access to large areas of reciprocal space to study the evolution of long- and short-range CDWs with in-plane strains and as a function of doping. This further allows us to precisely monitor in-situ the structural changes induced by uniaxial pressurization of the crystals for a precise strain estimation in measurements up to −0.85%-0.85 \% compression. Interestingly, we uncover direct evidence for a competition between long- and short-range CDWs and show that the long-range CDW modulation remains incommensurate at all investigated strains and temperatures, showing neither signs of discommensurations nor a pair-density wave component at λPDW=2λCDW\lambda_{\rm{PDW}} = 2\lambda_{\rm{CDW}} below TcT_c. We discuss the impact of structural disorder and the relationship of our findings to previous reports on nematicity in high-temperature superconducting cuprates. More generally, our results underscore the potential of strain tuning as a powerful tool for probing and manipulating competing orders in quantum materials.Comment: I. Vinograd and S. M. Souliou contributed equally to this wor

    Hidden magnetism at the pseudogap critical point of a high temperature superconductor

    Full text link
    The mysterious pseudogap phase of cuprate superconductors ends at a critical hole doping level p* but the nature of the ground state below p* is still debated. Here, we show that the genuine nature of the magnetic ground state in La2-xSrxCuO4 is hidden by competing effects from superconductivity: applying intense magnetic fields to quench superconductivity, we uncover the presence of glassy antiferromagnetic order up to the pseudogap boundary p* ~ 0.19, and not above. There is thus a quantum phase transition at p*, which is likely to underlie highfield observations of a fundamental change in electronic properties across p*. Furthermore, the continuous presence of quasi-static moments from the insulator up to p* suggests that the physics of the doped Mott insulator is relevant through the entire pseudogap regime and might be more fundamentally driving the transition at p* than just spin or charge ordering.Comment: 26 pages, supplementary info include

    Nuclear magnetic resonance studies of competing orders in cuprate superconductors

    No full text
    Les cuprates sont des matĂ©riaux que l’on peut faire passer d'un isolant antiferromagnĂ©tique Ă  un mĂ©tal normal en augmentant leur densitĂ© de porteurs par dopage chimique. Aux dopages intermĂ©diaires, une riche variĂ©tĂ© de phases Ă©lectroniques apparaĂźt aux cĂŽtĂ©s de la phase supraconductrice, ou mĂȘme entrelacĂ©e avec elle. Le but de cette thĂšse Ă©tait de caractĂ©riser divers aspects de la compĂ©tition entre la supraconductivitĂ© et les ordres de charge ou de spin, en utilisant la rĂ©sonance magnĂ©tique nuclĂ©aire (RMN). Une premiĂšre partie du travail a consistĂ© Ă  amĂ©liorer la modĂ©lisation des spectres RMN des noyaux de 17O dans les deux phases onde de densitĂ© de charge (ODC) prĂ©sentes dans YBa2Cu3Oy: l’ordre Ă  courte portĂ©e et l’ordre Ă  longue portĂ©e (induit par le champ magnĂ©tique). En plus de fournir un cadre d'analyse beaucoup plus prĂ©cis pour les donnĂ©es de RMN en fonction du champ, du dopage et de la pression (voir ci-aprĂšs), les rĂ©sultats indiquent que l’ODC Ă  haut champ est uni-axiale (c'est-Ă -dire avec un vecteur d'onde unique q), avec une pĂ©riode commensurable avec le rĂ©seau de trois cellules unitaires (q = 1/3). Le deuxiĂšme aspect de la compĂ©tition de phases abordĂ© dans ce travail est l'effet (controversĂ©) de la pression hydrostatique. Nos mesures montrent qu'une pression de 1,9 GPa n'affaiblit que trĂšs lĂ©gĂšrement l’ODC Ă  courte portĂ©e dans l'Ă©tat normal ainsi que l’ODC Ă  longue portĂ©e observĂ©e Ă  haut champ. Les rĂ©sultats soutiennent l’hypothĂšse selon laquelle l'augmentation continue de Tc lorsque la pression augmente jusqu'Ă  15 GPa est presque entiĂšrement due Ă  une diminution progressive de la force de l’ODC. Ceci montre que la pression hydrostatique est un paramĂštre permettant de contrĂŽler la compĂ©tition entre l’ODC et la supraconductivitĂ© dans les cuprates.Dans la troisiĂšme partie de la thĂšse, des mesures du taux de relaxation spin-rĂ©seau (1/T1) des noyaux de 139La ont permis d’étudier l'effet d'un champ magnĂ©tique sur la mise en ordre vitreuses des spins dans La2-xSrxCuO4. En utilisant des champs Ă©levĂ©s jusqu’à 45 T, nous montrons que le champ est capable d’induire une phase gelĂ©e, ou presque gelĂ©e, Ă  des niveaux de dopage bien supĂ©rieurs Ă  ceux supposĂ©s prĂ©cĂ©demment, Ă  savoir jusqu’au dopage critique attribuĂ© Ă  l’extrĂ©mitĂ© de la phase pseudogap mais pas au-delĂ  de ce point, ou pas loin au-delĂ . Ce rĂ©sultat a des implications importantes pour l'interprĂ©tation de la phase de pseudogap et de la criticitĂ© quantique qui lui est associĂ©e.Cuprates are materials that can be tuned from an antiferromagnetic insulator to a normal metal by increasing the carrier density through chemical doping. At intermediate doping, a rich variety of electronic phases emerges alongside, or intertwined, with the superconducting phase. The aim of this thesis was to characterise various aspects of the competition between superconductivity and charge or spin order, using nuclear magnetic resonance (NMR).A first part of the work consisted in improving the modelling of 17O NMR spectra in the two charge-density wave (CDW) phases present in YBa2Cu3Oy: the short-range order and the (magnetic-field induced) long-range order. Besides providing a much more accurate analysis framework for NMR data as a function of field, doping and pressure (see hereafter), the results indicate that the CDW in high-fields is uniaxial (i.e. single wave vector q) and commensurate with the lattice, with a period of three unit cells (q=1/3).The second aspect of phase competition addressed in this work is the (controversial) effect of hydrostatic pressure. Our measurements show that a pressure of 1.9 GPa weakens the short-range CDW in the normal state and the long-range CDW observed in high fields only slightly. The results support the proposal that the continuous rise in Tc upon increasing pressure up to 15 GPa arises almost entirely from a gradual decrease of the CDW strength. This establishes hydrostatic pressure as a tuning parameter of the competition between CDW order and superconductivity in the cuprates.In the third part of the thesis, 139La spin-lattice relaxation rate (1/T1) measurements were used to study the effect of a magnetic field on glassy spin ordering in La2-xSrxCuO4. Using high fields up to 45 T, we reveal that the field is able to induce a frozen, or nearly so, phase at doping levels much higher than previously assumed, namely up to the putative endpoint of the pseudogap boundary, but not, or not far, beyond that point. This result has important implications for interpreting the pseudogap phase and its associated quantum criticality

    Études par rĂ©sonance magnĂ©tique nuclĂ©aire des ordres en compĂ©tition dans les cuprates supraconducteurs

    Get PDF
    Cuprates are materials that can be tuned from an antiferromagnetic insulator to a normal metal by increasing the carrier density through chemical doping. At intermediate doping, a rich variety of electronic phases emerges alongside, or intertwined, with the superconducting phase. The aim of this thesis was to characterise various aspects of the competition between superconductivity and charge or spin order, using nuclear magnetic resonance (NMR).A first part of the work consisted in improving the modelling of 17O NMR spectra in the two charge-density wave (CDW) phases present in YBa2Cu3Oy: the short-range order and the (magnetic-field induced) long-range order. Besides providing a much more accurate analysis framework for NMR data as a function of field, doping and pressure (see hereafter), the results indicate that the CDW in high-fields is uniaxial (i.e. single wave vector q) and commensurate with the lattice, with a period of three unit cells (q=1/3).The second aspect of phase competition addressed in this work is the (controversial) effect of hydrostatic pressure. Our measurements show that a pressure of 1.9 GPa weakens the short-range CDW in the normal state and the long-range CDW observed in high fields only slightly. The results support the proposal that the continuous rise in Tc upon increasing pressure up to 15 GPa arises almost entirely from a gradual decrease of the CDW strength. This establishes hydrostatic pressure as a tuning parameter of the competition between CDW order and superconductivity in the cuprates.In the third part of the thesis, 139La spin-lattice relaxation rate (1/T1) measurements were used to study the effect of a magnetic field on glassy spin ordering in La2-xSrxCuO4. Using high fields up to 45 T, we reveal that the field is able to induce a frozen, or nearly so, phase at doping levels much higher than previously assumed, namely up to the putative endpoint of the pseudogap boundary, but not, or not far, beyond that point. This result has important implications for interpreting the pseudogap phase and its associated quantum criticality.Les cuprates sont des matĂ©riaux que l’on peut faire passer d'un isolant antiferromagnĂ©tique Ă  un mĂ©tal normal en augmentant leur densitĂ© de porteurs par dopage chimique. Aux dopages intermĂ©diaires, une riche variĂ©tĂ© de phases Ă©lectroniques apparaĂźt aux cĂŽtĂ©s de la phase supraconductrice, ou mĂȘme entrelacĂ©e avec elle. Le but de cette thĂšse Ă©tait de caractĂ©riser divers aspects de la compĂ©tition entre la supraconductivitĂ© et les ordres de charge ou de spin, en utilisant la rĂ©sonance magnĂ©tique nuclĂ©aire (RMN). Une premiĂšre partie du travail a consistĂ© Ă  amĂ©liorer la modĂ©lisation des spectres RMN des noyaux de 17O dans les deux phases onde de densitĂ© de charge (ODC) prĂ©sentes dans YBa2Cu3Oy: l’ordre Ă  courte portĂ©e et l’ordre Ă  longue portĂ©e (induit par le champ magnĂ©tique). En plus de fournir un cadre d'analyse beaucoup plus prĂ©cis pour les donnĂ©es de RMN en fonction du champ, du dopage et de la pression (voir ci-aprĂšs), les rĂ©sultats indiquent que l’ODC Ă  haut champ est uni-axiale (c'est-Ă -dire avec un vecteur d'onde unique q), avec une pĂ©riode commensurable avec le rĂ©seau de trois cellules unitaires (q = 1/3). Le deuxiĂšme aspect de la compĂ©tition de phases abordĂ© dans ce travail est l'effet (controversĂ©) de la pression hydrostatique. Nos mesures montrent qu'une pression de 1,9 GPa n'affaiblit que trĂšs lĂ©gĂšrement l’ODC Ă  courte portĂ©e dans l'Ă©tat normal ainsi que l’ODC Ă  longue portĂ©e observĂ©e Ă  haut champ. Les rĂ©sultats soutiennent l’hypothĂšse selon laquelle l'augmentation continue de Tc lorsque la pression augmente jusqu'Ă  15 GPa est presque entiĂšrement due Ă  une diminution progressive de la force de l’ODC. Ceci montre que la pression hydrostatique est un paramĂštre permettant de contrĂŽler la compĂ©tition entre l’ODC et la supraconductivitĂ© dans les cuprates.Dans la troisiĂšme partie de la thĂšse, des mesures du taux de relaxation spin-rĂ©seau (1/T1) des noyaux de 139La ont permis d’étudier l'effet d'un champ magnĂ©tique sur la mise en ordre vitreuses des spins dans La2-xSrxCuO4. En utilisant des champs Ă©levĂ©s jusqu’à 45 T, nous montrons que le champ est capable d’induire une phase gelĂ©e, ou presque gelĂ©e, Ă  des niveaux de dopage bien supĂ©rieurs Ă  ceux supposĂ©s prĂ©cĂ©demment, Ă  savoir jusqu’au dopage critique attribuĂ© Ă  l’extrĂ©mitĂ© de la phase pseudogap mais pas au-delĂ  de ce point, ou pas loin au-delĂ . Ce rĂ©sultat a des implications importantes pour l'interprĂ©tation de la phase de pseudogap et de la criticitĂ© quantique qui lui est associĂ©e

    Anomalous phonon GrĂŒneisen parameters in the semiconductor Ta 2 NiS 5

    No full text
    Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Alexander von Humboldt-Stiftung http://dx.doi.org/10.13039/100005156Karlsruhe Institute of Technology http://dx.doi.org/10.13039/10000913

    High magnetic field ultrasound study of spin freezing in La1.88_{1.88}Sr0.12_{0.12}CuO4_4

    No full text
    12 pages, 8 figuresInternational audienceHigh-TcT_{\rm{c}} cuprate superconductors host spin, charge and lattice instabilities. In particular, in the antiferromagnetic glass phase, over a large doping range, lanthanum based cuprates display a glass-like spin freezing with antiferromagnetic correlations. Previously, sound velocity anomalies in La2−x_{2-x}Srx_{x}CuO4_4 (LSCO) for hole doping p≄0.145p\geq 0.145 were reported and interpreted as arising from a coupling of the lattice to the magnetic glass [Frachet, Vinograd et al., Nat. Phys. 16, 1064-1068 (2020)]. Here we report both sound velocity and attenuation in LSCO p=0.12p=0.12, i.e. at a doping level for which the spin freezing temperature is the highest. Using high magnetic fields and comparing with nuclear magnetic resonance (NMR) measurements, we confirm that the anomalies in the low temperature ultrasound properties of LSCO are produced by a coupling between the lattice and the spin glass. Moreover, we show that both sound velocity and attenuation can be simultaneously accounted for by a simple phenomenological model originally developed for canonical spin glasses. Our results point towards a strong competition between superconductivity and spin freezing, tuned by the magnetic field. A comparison of different acoustic modes suggests that the slow spin fluctuations have a nematic character

    Hidden magnetism at the pseudogap critical point of a cuprate superconductor

    Full text link
    The nature of the pseudogap phase of hole-doped cuprate superconductors is still not understood fully. Several experiments have suggested that this phase ends at a critical hole doping level p*, but the nature of the ground state for lower doping is still debated. Here, we use local nuclear magnetic resonance and bulk ultrasound measurements to show that, once competing effects from superconductivity are removed by high magnetic fields, the spin-glass phase of La2−xSrxCuO4 survives up to a doping level consistent with p*. In this material, the antiferromagnetic-glass phase extends from the doped Mott insulator at p = 0.02 up to p* ≈ 0.19, which provides a connection between the pseudogap and the physics of the Mott insulator. Furthermore, the coincidence of the pseudogap boundary with a magnetic quantum phase transition in the non-superconducting ground state has implications for the interpretation of other experiments, particularly for transport and specific-heat measurements in high magnetic fields
    corecore