34 research outputs found

    A novel conservative chaos driven dynamic DNA coding for image encryption

    Full text link
    In this paper, we propose a novel conservative chaotic standard map-driven dynamic DNA coding (encoding, addition, subtraction and decoding) for the image encryption. The proposed image encryption algorithm is a dynamic DNA coding algorithm i.e., for the encryption of each pixel different rules for encoding, addition/subtraction, decoding etc. are randomly selected based on the pseudorandom sequences generated with the help of the conservative chaotic standard map. We propose a novel way to generate pseudo-random sequences through the conservative chaotic standard map and also test them rigorously through the most stringent test suite of pseudo-randomness, the NIST test suite, before using them in the proposed image encryption algorithm. Our image encryption algorithm incorporates a unique feed-forward and feedback mechanisms to generate and modify the dynamic one-time pixels that are further used for the encryption of each pixel of the plain image, therefore, bringing in the desired sensitivity on plaintext as well as ciphertext. All the controlling pseudorandom sequences used in the algorithm are generated for a different value of the parameter (part of the secret key) with inter-dependency through the iterates of the chaotic map (in the generation process) and therefore possess extreme key sensitivity too. The performance and security analysis has been executed extensively through histogram analysis, correlation analysis, information entropy analysis, DNA sequence-based analysis, perceptual quality analysis, key sensitivity analysis, plaintext sensitivity analysis, etc., The results are promising and prove the robustness of the algorithm against various common cryptanalytic attacks.Comment: 29 pages, 5 figures, 15 table

    An Efficient Light-weight LSB steganography with Deep learning Steganalysis

    Full text link
    Active research is going on to securely transmit a secret message or so-called steganography by using data-hiding techniques in digital images. After assessing the state-of-the-art research work, we found, most of the existing solutions are not promising and are ineffective against machine learning-based steganalysis. In this paper, a lightweight steganography scheme is presented through graphical key embedding and obfuscation of data through encryption. By keeping a mindset of industrial applicability, to show the effectiveness of the proposed scheme, we emphasized mainly deep learning-based steganalysis. The proposed steganography algorithm containing two schemes withstands not only statistical pattern recognizers but also machine learning steganalysis through feature extraction using a well-known pre-trained deep learning network Xception. We provided a detailed protocol of the algorithm for different scenarios and implementation details. Furthermore, different performance metrics are also evaluated with statistical and machine learning performance analysis. The results were quite impressive with respect to the state of the arts. We received 2.55% accuracy through statistical steganalysis and machine learning steganalysis gave maximum of 49.93~50% correctly classified instances in good condition.Comment: Accepted pape

    Creation of Periodic and Chaotic Attractors Using Blending Technique

    Get PDF

    Role of Nano Technology and Commercialisation of IPR Issues -Tiger Leaps for Nano technology Patenting in India

    Get PDF
    There has arisen an unanswered question that does need foray and discussion in the field of Nano technology patenting as prevailing in India in the post TRIPS agreement 1994 (WTO / WIPO) regime whether Indian IPRS regime is not only equipped but well equipped to handle Nano technology suitably enough in terms of law and infrastructure to implement and launched the both themselves? Whether the regime strikes a super balance between public/social interests of inventions? After globalisation the sickness of regime has not been able to strike in consonance with globe. The paper attempts and seeks/or search to challenges which Nano technology patenting can essentially being addressed despite too much lack of vulnerability looms large in India

    A family of robust chaotic S-unimodal maps based on the Gaussian function

    No full text
    This research paper introduces a family of one-dimensional S-unimodal maps based on the Gaussian function, designed to exhibit robust chaos across a wide range of parameters. These maps are developed to display robust chaos by avoiding multiple fixed points that are primarily responsible for the coexisting attractors in 1D maps. The parameter space analysis reveals that chaotic behaviour is sustained across the entire parameter space, except for a very narrow region. The study employs a comprehensive computational approach, including quantitative measures such as sample entropy, Lyapunov exponent, and invariant measures. The uniformly higher values of sample entropy, uniform positive values of the Lyapunov exponent, and the existence of invariant measures in a region of parameter space confirm the presence of robust chaos in these maps. Such a promising class of robust chaotic maps may be potentially used in diverse fields such as chaos-based cryptography, pseudo-random number generation, communication systems, and more
    corecore