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Abstract : In this communication, we demonstrate that by using blending of chaotic attractor with a limit cycle attractor generated by the 
similai system operating in the periodic regime of oscillations (may be weak, period-1 , penod- 2  etc.), one can create various periodic and chaotic 
atiiactors having properties intermediate between the chaotic and periodic attractors, which were initially used for the blending mechanism. 
Basically it is the mutual coupling mechanism between the phase variables of chaotic and periodic oscillators of same kind, which does not rely on 
ihc knowledge of the system model equations and the system parameters are not changed explicitly. The technique is expected to be useful for those 
physical systems in which direct accessibility of its parameters is either difficult or not po.ssible. We present the results of our numerical simulations 
oil Duffing oscillator and Jerk dynamical systems, which represent the plasma oscillations and WINDMl model of the earth's magnetosphere 
respectively.
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Dynamical chaos is very interesting phenomenon and it 
lias been detected in a large number of nonlinear 
dynamical systems o f different physical nature. In many 
situations chaos is undesirable phenomenon, which may 
lead to irregular operation in physical systems. Thus 
from a practical point o f view one would like to convert 
chaotic .solutions into periodic limit cycle or fixed point 
solutions. On the other hand, there has been growing 
interest to use chaos profitably by synchronizing chaotic 
orbits [1,2] due to its potential application in secure 
communication [2-7], It has also become important in 
order to evaluate the characteristics of physical systems 

using scalar observations even when the output is 
chaotic.

lo general, we wish to control chaotic oscillations in 
“'ome systems of practical interest whereas for the other 
acquirements, we desire to produce chaotic signals having 
specific properties. Till now, we often focus on the 
I'niited number o f available chaotic systems instead of 
Producing a chaotic signal having specific properties for 

‘̂ bosen puipose. It would be quite interesting to 
P*^uce various chaotic signals having desired properties

from the available chaotic source. If we do not have 
direct access to the system parameters of the available 
physical system then the problem of designing chaotic 
signals of desired properties from it, presents a big 
challenge. However a number of algorithms |8-10] have 
been suggested in the literature for controlling chaos but 
the designing of chaotic signal having specific properties 
for the chosen purpose is still a challenge. At this time 
no general mathematical solution of this problem exists in 
the literature. We propose a technique, which is expected 
to provide a practical solution to this problem. Recently 
Patidar et at |11 | have proposed an algorithm for 
suppression of chaos in which authors were able to 
suppress chaotic oscillations by means of establishing a 
mutual coupling of the chaotic system with a similar 
system operating in a weakly periodic regime o f 
oscillations. The technique developed by Patidar et al 
does not require the knowledge o f the system model 
equation and the system parameters are not changed 
during the control task. In this communication, we 
present the generalization of the algorithm developed by 
Patidar et al [ \\ \  through which we are able to suppress 
the chaos as well as design the chaotic signal of specific
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properties from the available chaotic signal. We particularly 
report that by using blending of chaotic oscillator with a 
similar oscillator operating in a periodic regime of 
oscillations (may be weak periodic, period-1, period-2 
limit cycles etc.), one can create various periodic and 
chaotic signals having properties intermediate between the 
chaotic and periodic signals, which were initially used for 
the blending mechanism. Basically it is a mutual coupling 
mechanism between the phase variables or combination 
of phase variables (which are accessible in actual physical 
systems) o f the chaotic and periodic oscillators of same 
kind. We designate this mutual coupling transformation as 
'symmetric blending’ of chaotic and periodic oscillators 
of similar kind because of the following reasons ;

(i) The mutual coupling is done for any state variable 
or combination of state variables, which are 
accessible in the actual physical systems i.e. it 
does not require the knowledge of the system 
model equation.

(ii) The mutual coupling is symmetric Le. the chosen 
state variable or combination of state variables for 
the mutual coupling in periodic and chaotic 
oscillators are the counter parts.

(Hi) The mutual coupling does not change any of the 
system parameters explicitly i.e. no need to have 
direct access of any of the system parameters.

In general any physical oscillator can be represented as 
follows :

O {x,x ,x ,S ix),fi)= 0, (1)

here x, x  and x  are the state variable and its derivatives 
respectively, S{x) is state variable or combination of state 
variables (i.e. jr or or sin x etc.) which is accessible in
the actual physical system and .....•At„)is the
set of system parameters. We are considering the situation 
in which, we do not have access to any o f the system
parameters ......n„) and eq. (1) possesses chaotic
and periodic behaviours at least for certain range of 
system parameters.

For the proposed blending mechanism, we start with 
two oscillators of same kind, one of them is in chaotic 
regime o f oscillation and another one is in periodic 
regime o f oscillation as stated below :

here ftp and ftc represent the set of system parameters 
corresponding to periodic and chaotic oscillation., 
respectively. We have assigned x-variable and y-variahle 
for the chaotic and periodic oscillators respectively.

After establishing the proposed blending {i.e. mutual 
coupling) the eqs. (2) and (3) will take the forms :

O (x .i,x ,{c* S (y ) + ( l-c )* 5 (x )} ,) /p )= 0 ,

O (y .y .y .k * 'S (x )+ ( l-c )* S (y ) ) ,M r)= 0 , isi

here c represents the mutual coupling strength /.<. 
percentage of blending between the chaotic and pcnodu, 
oscillators and by varying the percentage of blending one 
can make a choice for periodic or chaotic signal as 
required for the specific purpose. In Figure I, we have 
shown the schematic representation of the proposed 
symmetric blending mechanism between chaotic and 
periodic oscillators. In the next paragraph, we presem

S( x ) - - yc * S ( yh ( \ - c ) * S ( x )
I j

t________ 3

-------------r

S(x) 
-------- »

I4--------
S(y)

S(y ) - ^c*S(x ) +( l - c ) *S(y )

O (x ,x ,x ,S {x ) ,fip )^0 , 

O (y ,y ,y ,S (y ),tic )= 0 ,

(2)

(3)

Figure 1. Schematic representation of blending of chaotic and pcnodit 
oscillators of same kind. S{x) and S{y) are the state variables or combi nation 
of state variables in chaotic and periodic oscillators respectively, whidi arc 
accessible in the actual physical systems and c is the percentage of blendin)' 
(i.e. mutual coupling strength) between the oscillators.

results of our numerical simulations using the proposed 
blending mechanism on Duffing oscillator and jerk 

dynamical systems.
Duffing oscillator is a second order nonlinear 

differential equation, which can be represented as :

x + d x -x (l-x ^ )= fc o sQ X ,

This equation represents forced vibrations o f a buckled 

beam 1121, where x  is the lateral motion of the beam 
Eq. (6) has also been used to study the motion ot a 
particle in two well potential [13] as well as plasma 

oscillations [14] and it exhibits period doubling route to 
chaos in the param eter space (f.d). For numerical 
simulations, we have assumed that the underlined tenn 
{Le. S(jt)s= x ^ ) is accessible in the actual jrtiysical system- 
The establishment o f the proposed blending in Duffing



oscillator leads to the following equations :

V+rf, i  -  41 -  {cy^ + (l-c ) .r^ } ]= / ,  cos on.
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In Figure 2, we show the results of our numerical 
(7a) ovulations of blending of chaotic and weak periodic

\ +^2 y -  41 ~ (c-r^ + ( l -c )y ^ } ]= / j  cos on.

n r

Duffing oscillators = 0.37, di = 0.5. /2 = 0.05. d2 = 
0.05 and (o = 1.0). Each row of frames shows the
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2. Bleiuang of chaotic and weak periodic Duffing oscillators using the algorithm shown in Figure 1 for S(x) = x* and S(y) * (i.e. eqs. (7a) and (7b))

-  0.37. d, *0.5./2=: 0.05. <4 *0.05 and w « 1.0. In each row, Frames (i) and (ii) show the phase behaviour of initially chaotic and periodic Duffing 
respectively, and the Frame (iii) represents the power specinims of the oscillators (solid and dashed lines show the power spectnuns of initially 

and periodic Duffing oscillatofs respectively), (a) c » 0. (b) c * 0.3. (c) c = 0.473, (d) c « 0.477 and (c) c « 0.484.
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behaviour of the coupled system (eqs. (7a) and (7b)) for 
a specific value of the mutual coupling strength (c). 
Particularly, first row (indexed by (a)), second row 
(indexed by (b)), third row (indexed by (c)), fourth row 
(indexed by (d)) and fifth row (indexed by (e)) represent 
the behaviour of the coupled system (eqs. (7a) and (7b)) 
for c = 0, c = 0.3, c = 0.473, c = 0.477 and c = 0.484 
respectively. In each row. Frames (i) and (ii) show the 
phase behaviour of initially chaotic and periodic oscillators 
respectively. The Frame (iii) represents the power 
spectrums of both the oscillators (solid and dashed lines 
are respectively for initially chaotic and periodic 
oscillators) and also shows the dominant frequency 
components present in the signals shown in Frames (i) 
and (ii). We observe from Figure 2 that as we increase 
the percentage of blending (mutual coupling strength (c)) 
between the chaotic and weak periodic Duffing oscillators, 
we obtain the various chaotic and periodic attractors 
which inherently exist in the oscillator system (for different 
sets of parameters) but due to unavailability of the direct 
access to its system parameters, can not be produced.

We would also like to mention here that we are 
imposing the blending (mutual coupling) externally for 
the practical purpose so obviously we have the access to 
the coupling .strength and hence one can precisely fix the 
percentage of blending and thus in a position to produce 
the chaotic or periodic signal of the desired property.

We have also tested the proposed blending technique 
on another recently investigated simple chaotic system 
involving jerk equation [lS-18]. Jerk equation is an 
ordinary third order nonlinear differential equation in one 
real scalar dynamical variable. The functional form of 
the jerk equation is x = J (x ,x ,x ) ,  here x  is rate of 
change of acceleration and is called jerk. We have 
considered the following form of the jerk equation :

j t + i 4 i + i - B ( i ^ - l ) = 0 .  (8)

This equation also shows period doubling route to chaos 
in the parameter space (A.B) [15,19]. We would also like 
to mention here that eq. (8) also represents the simplified 
model (with reasonable approximations) o f the six 
dimensional solar wind driven magnetosphere ionosphere 
(WINDMI) model [20-22J. The difference is only in the 
form of nonlinearity Le. B(x^ -  1) is to be replaced by 
B(tm h x  + Q .  Similar to the earlier example of Duffing 
oscillator, we have assumed that the underlined term (i.e.

S(x) = x^) is accessible in the actual physical system and 
the proposed blending leads to the following citupied 
equations :

x+ i4 ,Jc+ i-fl|{ [cy^  + ( l - c ) x ^ ] - l ] = 0 ,  

> ^ 2 3 ' ~ ̂ 2f + 0  ̂ -1]=0* (%)

In Figure 3, we show the results of our numerical 
simulations of blending of chaotic and periodic (period-2; 
jerk dynamical systems {A\ = 0.6, Bj = 0.58, .4 , = 07  

and Bi = 0.58). In this case first row (indexed by (an, 

second row (indexed by (b)), third row (indexed by (cn. 

fourth row (indexed by (d)) and fifth row (indexed h\
(e)) represent the behaviour of the coupled system (eqs 

(9a) and (9b)) for c = 0, c = 0.1, c = 0.2, c = 0.3 ami 
c = 0.37 respectively. It is also clear from Figure 3 that 
the proposed blending technique is able to produce \ anous 
chaotic and periodic signals by simply varying the 
percentage of blending between the chaotic and periodic 

(period-2) jerk dynamical systems.

In both cases (Duffing oscillator and jerk dynamical 
systems) investigated by us, we have taken r ' a.'s the 
accessible term and considered a few selected scm of 
parameters. However, we have found in our numerical 
simulations that the proposed technique is also sucie.ssful 
if we choose other terms (x, x  ̂ etc.) as accessible tcmi 
(in a real system the selection of the term will depend on j 
the physical accessibility) as well as consider other set oi 
parameters. For brevity, we have not given the figures 
corresponding to other terms and set of parameters here.

In summary, by generalizing the chaos suppression 
algorithm [11], we have attempted to tackle two problems 
(Le. chaos suppression and design o f chaotic signals from 
the available chaotic signal) with a single algorithm and 
successfully tested it on two oscillators. However, a 
number o f algorithms exist in the literature tor the 
suppression o f chaos but the proposed blending technique 
is easily implementable without having the knowledge of 
system model equation as well as witiiout disturbing the 
system parameters explicitly. In addition, the pnrposed 
blending technique is also able to produce various designer 
chaotic signals, so it is expected to be more advantageous 
for various c iyp togra^ ic  and secure communication [2  ̂

7] purposes, w hoe the chaotic signals o f desired ptopem 
are required.
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3. Blending of and weak periodic (period-2) jeik dynamical systems using the algorithm shown in Figure 1 for Sfjc) = *> and S(y) = y' (i.e. 

*<!* (9a) and (9b)) and /t, * 0.6* B, » 0.58, A t« 0.7 and flj = 0.58. In each row. Frames (i) and (ii) show the phase behaviour of initially chaotic and periodic 
i*fk dynamical systems respectively, and the Frame (iii) represents the power speettums of the systems (solid and dashed lines show the power spectrums of 
initially chaotic and periodic jerk dynamical systems respectively), (a) c = 0, (b) c = 0.1. (c) c = 0.2, (d) c * 0.3 and (e) c = 0.37.
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