397 research outputs found

    Rotating massive O stars with non-spherical 2D winds

    Full text link
    We present solutions for the velocity field and mass-loss rates for 2D axisymmetric outflows, as well as for the case of mass accretion through the use of the Lambert W-function. For the case of a rotating radiation-driven wind the velocity field is obtained analytically using a parameterised description of the line acceleration that only depends on radius r at any given latitude θ\theta. The line acceleration g(r) is obtained from Monte-Carlo multi-line radiative transfer calculations. The critical/sonic point of our equation of motion varies with latitude θ\theta. Furthermore, an approximate analytical solution for the supersonic flow of a rotating wind is derived, which is found to closely resemble the exact solution. For the simultaneous solution of the mass-loss rate and velocity field, we use the iterative method of our 1D method extended to the non-spherical 2D case. We apply the new theoretical expressions with our iterative method to the stellar wind from a differentially rotating 40 MsunM_{sun} O5-V main sequence star as well as to a 60 MsunM_{sun} O-giant star, and we compare our results to previous studies that are extensions of the Castor et al. (1975, ApJ, 195, 157) CAK formalism. Next, we account for the effects of oblateness and gravity darkening. Our numerical results predict an equatorial decrease of the mass-loss rate, which would imply that (surface-averaged) total mass-loss rates are lower than for the spherical 1D case, in contradiction to the Maeder & Meynet (2000, A&A, 361, 159) formalism that is oftentimes employed in stellar evolution calculations for rotating massive stars. To clarify the situation in nature we discuss observational tests to constrain the shapes of large-scale 2D stellar winds.Comment: 20 pages, 4 figures, 7 tables, accepted for publication in A&A, (one corrected sentence in sect. 4.1.), a generalization of arXiv paper: arXiv:0810.190

    The Role of Diffusive Shock Acceleration on Nonequilibrium Ionization in Supernova Remnant Shocks II: Emitted Spectra

    Full text link
    We present a grid of nonequilibrium ionization models for the X-ray spectra from supernova remnants undergoing efficient diffusive shock acceleration. The calculation follows the hydrodynamics of the blast wave as well as the time-dependent ionization of the plasma behind the shock. The ionization state is passed to a plasma emissivity code to compute the thermal X-ray emission, which is combined with the emission from nonthermal synchrotron emission to produce a self-consistent model for the thermal and nonthermal emission from cosmic-ray dominated shocks. We show how plasma diagnostics such as the G'-ratio of He-like ions, defined as the ratio of the sum of the intercombination, forbidden, and satellite lines to the resonance line, can vary with acceleration efficiency, and discuss how the thermal X-ray emission, when the time-dependent ionization is not calculated self-consistently with the hydrodynamics, can differ from the thermal X-ray emission from models which do account for the hydrodynamics. Finally we compare the thermal X-ray emission from models which show moderate acceleration (~ 35%) to the thermal X-ray emission from test-particle models.Comment: 17 pages, 12 figures. accepted for publication in the Astrophysical Journa

    Quark propagator from an improved staggered action in Laplacian and Landau gauges

    Get PDF
    Studies of gauge dependent quantities are afflicted with Gribov copies, but Laplacian gauge fixing provides one possible solution to this problem. We present results for the lattice quark propagator in both Landau and Laplacian gauges using standard and improved staggered quark actions. The standard Kogut-Susskind action has errors of \oa{2} while the improved ``Asqtad'' action has \oa{4}, \oag{2}{2} errors and this improvement is seen in the quark propagator. We demonstrate the application of tree-level corrections to these actions and see that Landau and Laplacian gauges produce very similar results. In addition, we test an ansatz for the quark mass function, with promising results. In the chiral limit, the infrared quark mass, M(q2=0)M(q^2 = 0) is found to be 260±20260\pm 20 MeV.Comment: 5 pages, 8 figs., Talk given at LHP workshop, Cairn

    Thermal X-ray Spectra of Supernova Remnants

    Get PDF

    Particle Acceleration in Supernova Remnants and the Production of Thermal and Nonthermal Radiation

    Get PDF
    If highly efficient, cosmic ray production can have a significant effect on the X-ray emission from SNRs as well as their dynamical evolution. Using hydrodynamical simulations including diffusive shock acceleration, we produce spectra for both the thermal and nonthermal forward shock emission. For a given ambient density and explosion energy, we find that the position of the forward shock at a given age is a strong function of the acceleration efficiency, providing a signature of cosmic-ray production. Using an approximate treatment for the ionization state of the plasma, we investigate the effects of slow vs. rapid heating of the postshock electrons on the ratio of thermal to nonthermal X-ray emission at the forward shock. We also investigate the effects of magnetic field strength on the observed spectrum for efficient cosmic-ray acceleration. The primary effect of a large field is a considerable flattening of the nonthermal spectrum in the soft X-ray band. Spectral index measurements from X-ray observations may thus be indicators of the postshock magnetic field strength. The predicted gamma-ray flux from inverse-Compton (IC) scattering and neutral pion decay is strongly affected by the ambient conditions and, for the particular parameters used in our examples, the IC emission at E ~ 1 TeV exceeds that from pion decay, although at both lower and higher energies this trend is reversed for cases of high ambient density. More importantly, high magnetic fields produce a steepening of the electron spectrum over a wide energy range which may make it more difficult to differentiate between IC and pion-decay emission solely by spectral shape.Comment: 30 pages, 12 figures, submitted to ApJ January 200

    Lattice quark propagator in Landau and Laplacian gauges

    Get PDF
    Copyright © 2001 Published by Elsevier Science B.V. All rights reserved. Copyright © 2001. Submitted to Cornell University’s online archive www.arXiv.org in 2001 by Patrick O. Bowman. Post-print sourced from www.arxiv.org.We present results for the lattice quark propagator in both Landau and Laplacian gauges using standard and improved staggered quark actions. The standard Kogut-Susskind action has errors of \oa{2} while the improved ``Asqtad'' action has \oa{4}, \oag{2}{2} errors. This improvement is seen in the quark propagator. We demonstrate the application of tree-level corrections to these actions and see that Landau and Laplacian gauges produce very similar results.Patrick O. Bowman, Urs M. Heller and Anthony G. Williamshttp://www.elsevier.com/wps/find/journaldescription.cws_home/505717/description#descriptio

    Gluon Propagator on Coarse Lattices in Laplacian Gauges

    Get PDF
    The Laplacian gauge is a nonperturbative gauge fixing that reduces to Landau gauge in the asymptotic limit. Like Landau gauge, it respects Lorentz invariance, but it is free of Gribov copies; the gauge fixing is unambiguous. In this paper we study the infrared behavior of the lattice gluon propagator in Laplacian gauge by using a variety of lattices with spacings from a=0.125a = 0.125 to 0.35 fm, to explore finite volume and discretization effects. Three different implementations of the Laplacian gauge are defined and compared. The Laplacian gauge propagator has already been claimed to be insensitive to finite volume effects and this is tested on lattices with large volumes.Comment: RevTex 4.0, 14 pages, 9 colour figures; Correction to Reference

    Linking the concentrations of itraconazole and 2-hydroxypropyl-β-cyclodextrin in human intestinal fluids after oral intake of Sporanox<sup>®</sup>

    Get PDF
    In a previously performed small-scale clinical study, healthy volunteers were asked to ingest an oral solution of itraconazole (Sporanox®) containing 40% 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) (i) with or (ii) without a standardized volume of water (240 mL) after which gastrointestinal and blood samples were collected. Although omitting water during the administration of Sporanox® resulted in noticeably higher duodenal concentrations of itraconazole, systemic exposure was almost unaffected. It is assumed that this discrepancy can be explained by differences in the extent of entrapment of itraconazole in the duodenum caused by differential complexation depending on the concentration of cyclodextrins. To further substantiate this hypothesis, the quantification of HP-β-CD concentrations in the aspirated intestinal fluids was performed by LC-MS/MS. When comparing the intestinal concentrations of itraconazole and HP-β-CD for one single healthy volunteer (HV02) in both test conditions, an excellent correlation was observed (Spearman's rank coefficient of 0.96). Moreover, the data suggest that, similar to aqueous buffer media, also in human intestinal fluids a non-linear relationship exists between itraconazole solubility and HP-β-CD concentration (Ap-type profile; Spearman's rank coefficient of 0.78), indicating that higher order complexes are formed at higher concentrations of HP-β-CD. This difference in extent of entrapment in the inclusion complexes helps to understand the observed impact of water intake on precipitation and permeation behavior of itraconazole in man. Without water intake, higher HP-β-CD concentrations resulted in less precipitation and increased duodenal concentrations of itraconazole. On the other hand, the stronger interaction at higher HP-β-CD concentrations reduced the free fraction of the drug explaining that increased intraluminal concentrations of itraconazole were not translated into an enhanced uptake. In conclusion, quantifying the concentrations of the solubilizing agent HP-β-CD in human intestinal fluids appeared to be of crucial importance to interpret the intraluminal behavior of an orally administered cyclodextrin-based solution
    • …
    corecore