87 research outputs found
The theory of stellar winds
We present a brief overview of the theory of stellar winds with a strong
emphasis on the radiation-driven outflows from massive stars. The resulting
implications for the evolution and fate of massive stars are also discussed.
Furthermore, we relate the effects of mass loss to the angular momentum
evolution, which is particularly relevant for the production of long and soft
gamma-ray bursts. Mass-loss rates are not only a function of the metallicity,
but are also found to depend on temperature, particularly in the region of the
bi-stability jump at 21 000 Kelvin. We highlight the role of the bi-stability
jump for Luminous Blue Variable (LBV) stars, and discuss suggestions that LBVs
might be direct progenitors of supernovae. We emphasize that radiation-driven
wind studies rely heavily on the input opacity data and linelists, and that
these are thus of fundamental importance to both the mass-loss predictions
themselves, as well as to our overall understanding of the lives and deaths of
massive stars.Comment: 6 pages, invited review Astrophysics and Space Science, Vol 336,
Issue 1, pp. 163-167 (special HEDLA 2010 Issue
Infection with and carriage of Mycoplasma pneumoniae in children
"Atypical" pneumonia was described as a distinct and mild form of community-acquired pneumonia (CAP) already before Mycoplasma pneumoniae had been discovered and recognized as its cause. M. pneumoniae is detected in CAP patients most frequently among school-aged children from 5 to 15 years of age, with a decline after adolescence and tapering off in adulthood. Detection rates by polymerase chain reaction (PCR) or serology in children with CAP admitted to the hospital amount 4-39%. Although the infection is generally mild and self-limiting, patients of every age can develo
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
Critical aspects of the random-field Ising model
We investigate the critical behavior of the three-dimensional random-field Ising model
(RFIM) with a Gaussian field distribution at zero temperature. By implementing a
computational approach that maps the ground-state of the RFIM to the maximum-flow
optimization problem of a network, we simulate large ensembles of disorder realizations of
the model for a broad range of values of the disorder strength h and
system sizes = L3, with L ≤ 156. Our averaging procedure
outcomes previous studies of the model, increasing the sampling of ground states by a
factor of 103. Using well-established finite-size scaling schemes, the
fourth-order’s Binder cumulant, and the sample-to-sample fluctuations of various
thermodynamic quantities, we provide high-accuracy estimates for the critical field
hc, as well as the critical exponents ν,
β/ν, and γ̅/ν of the correlation length, order parameter, and
disconnected susceptibility, respectively. Moreover, using properly defined noise to
signal ratios, we depict the variation of the self-averaging property of the model, by
crossing the phase boundary into the ordered phase. Finally, we discuss the controversial
issue of the specific heat based on a scaling analysis of the bond energy, providing
evidence that its critical exponent α ≈ 0−
Eating to stop: Tyrosine supplementation enhances inhibitory control but not response execution
Animal studies and research in humans have shown that the supplementation of tyrosine, or tyrosine-containing diets, increase the plasma tyrosine and enhance brain dopamine (DA). However, the strategy of administering tyrosine (and the role of DA therein) to enhance cognition is unclear and heavily debated. We studied, in a healthy population, whether tyrosine supplementation improves stopping overt responses, a core cognitive-control function. In a double-blind, placebo-controlled, within-subject design, one hour following the administration of tyrosine (corresponding to the beginning of the 1 h-peak of the plasma concentration) or placebo, participants performed a stop-signal task—which taps into response inhibition and response execution speed. Participants in the Tyrosine condition were more efficient in inhibiting unwanted action tendencies but not in reacting to go signals. This is the first demonstration that the supplementation of tyrosine selectively targets, and reliably improves the ability to stop overt responses
Collisional and Radiative Processes in Optically Thin Plasmas
Most of our knowledge of the physical processes in distant plasmas is obtained
through measurement of the radiation they produce. Here we provide an overview of the
main collisional and radiative processes and examples of diagnostics relevant to the microphysical
processes in the plasma. Many analyses assume a time-steady plasma with ion
populations in equilibrium with the local temperature and Maxwellian distributions of particle
velocities, but these assumptions are easily violated in many cases. We consider these
departures from equilibrium and possible diagnostics in detail
Data on sex differences in one-year outcomes of out-of-hospital cardiac arrest patients without ST-segment elevation
Sex differences in out-of-hospital cardiac arrest (OHCA) patients are increasingly recognized. Although it has been found that post-resuscitated women are less likely to have significant coronary artery disease (CAD) than men, data on follow-up in these patients are limited. Data for this data in brief article was obtained as a part of the randomized controlled Coronary Angiography after Cardiac Arrest without ST-segment elevation (COACT) trial. The data supplements the manuscript “Sex differences in out-of-hospital cardiac arrest patients without ST-segment elevation: A COACT trial substudy” were it was found that women were less likely to have significant CAD including chronic total occlusions, and had worse survival when CAD was present. The dataset presented in this paper describes sex differences on interventions, implantable-cardioverter defibrillator (ICD) shocks and hospitalizations due to heart failure during one-year follow-up in patients successfully resuscitated after OHCA. Data was derived through a telephone interview at one year with the patient or general practitioner. Patients in this randomized dataset reflects a homogenous study population, which can be valuable to further build on research regarding long-term sex differences and to further improve cardiac care
- …