5 research outputs found

    Characterization of Solar Radiation-Induced Degradation Products of the Plant Sunscreen Sinapoyl Malate

    Get PDF
    Agricultural activities at lower temperatures lead to lower yields due to reduced plant growth. Applying photomolecular heater agrochemicals could boost yields under these conditions, but UV-induced degradation of these compounds needs to be assessed. In this study, we employ liquid chromatography-mass spectrometry (LC-MS) coupled with infrared ion spectroscopy (IRIS) to detect and identify the degradation products generated upon simulated solar irradiation of sinapoyl malate, a proposed photomolecular heater/UV filter compound. All major irradiation-induced degradation products are identified in terms of their full molecular structure by comparing the IRIS spectra obtained after LC fractionation and mass isolation with reference IR spectra obtained from quantum-chemical calculations. In cases where physical standards are available, a direct experimental-to-experimental comparison is possible for definitive structure identification. We find that the major degradation products originate from trans-to-cis isomerization, ester cleavage, and esterification reactions of sinapoyl malate. Preliminary in silico toxicity investigations using the VEGAHUB platform suggest no significant concerns for these degradation products’ human and environmental safety. The identification workflow presented here can analogously be applied to break down products from other agrochemical compounds. As the method records IR spectra with the sensitivity of LC-MS, application to agricultural samples, e.g., from field trials, is foreseen.</p

    Structural Elucidation of Agrochemical Metabolic Transformation Products Based on Infrared Ion Spectroscopy to Improve In Silico Toxicity Assessment

    Get PDF
    Toxicological assessments of newly developed agrochemical agents consider chemical modifications and their metabolic and biotransformation products. To carry out an in silico hazard assessment, understanding the type of chemical modification and its location on the original compound can greatly enhance the reliability of the evaluation. Here, we present and apply a method based on liquid chromatography-mass spectrometry (LC-MS) enhanced with infrared ion spectroscopy (IRIS) to better delineate the molecular structures of transformation products before in silico toxicology evaluation. IRIS facilitates the recording of IR spectra directly in the mass spectrometer for features selected by retention time and mass-to-charge ratio. By utilizing quantum-chemically predicted IR spectra for candidate molecular structures, one can either derive the actual structure or significantly reduce the number of (isomeric) candidate structures. This approach can assist in making informed decisions. We apply this method to a plant growth stimulant, digeraniol sinapoyl malate (DGSM), that is currently under development. Incubation of the compound in Caco-2 and HepaRG cell lines in multiwell plates and analysis by LC-MS reveals oxidation, glucuronidation, and sulfonation metabolic products, whose structures were elucidated by IRIS and used as input for an in silico toxicology assessment. The toxicity of isomeric metabolites predicted by in silico tools was also assessed, which revealed that assigning the right metabolite structure is an important step in the overall toxicity assessment of the agrochemical. We believe this identification approach can be advantageous when specific isomers are significantly more hazardous than others and can help better understand metabolic pathways

    Structural Elucidation of Agrochemicals and Related Derivatives Using Infrared Ion Spectroscopy

    No full text
    [Image: see text] Agrochemicals frequently undergo various chemical and metabolic transformation reactions in the environment that often result in a wide range of derivates that must be comprehensively characterized to understand their toxicity profiles and their persistence and outcome in the environment. In the development phase, this typically involves a major effort in qualitatively identifying the correct chemical isomer(s) of these derivatives from the many isomers that could potentially be formed. Liquid chromatography-mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy are often used in attempts to characterize such environment transformation products. However, challenges in confidently correlating chemical structures to detected compounds in mass spectrometry data and sensitivity/selectivity limitations of NMR frequently lead to bottlenecks in identification. In this study, we use an alternative approach, infrared ion spectroscopy, to demonstrate the identification of hydroxylated derivatives of two plant protection compounds (azoxystrobin and benzovindiflupyr) contained at low levels in tomato and spinach matrices. Infrared ion spectroscopy is an orthogonal tandem mass spectrometry technique that combines the sensitivity and selectivity of mass spectrometry with structural information obtained by infrared spectroscopy. Furthermore, IR spectra can be computationally predicted for candidate molecular structures, enabling the tentative identification of agrochemical derivatives and other unknowns in the environment without using physical reference standards
    corecore