346 research outputs found
Linear spectropolarimetry across the optical spectrum of Herbig Ae/Be stars
We present the results of spectropolarimetric observations of 12 Herbig Ae/Be objects. Our data have the largest spectropolarimetric wavelength coverage, 4560 Å to 9480~Å, published to date. A change in linear polarisation across the Hα line, is detected in all objects. Such a line effect reveals the fact that stellar photons are scattered off free electrons that are not distributed in a spherically symmetric volume, suggesting the presence of small disks around these accreting objects. Thanks to the large wavelength coverage, we can report that Hα is the spectral line in the optical wavelength range that is most sensitive to revealing deviations from spherical symmetry, and the one most likely to show a line effect across the polarisation in such cases. Few other spectral lines display changes in polarisation across the line. In addition, Hα is the only line which shows an effect across its absorption component in some sources. We present a scenario explaining this finding and demonstrate that the detection of the line effect strongly relies on the number of photons scattered into our line of sight. We highlight the special case of R Mon, which is the only object in our sample to show many lines with a polarisation effect, which is much stronger than in all other objects. Given that the object and its nebulosity is spatially resolved, we argue that this is due to scattering of the stellar and emission spectrum off circumstellar dust
A Statistical Spectropolarimetric Study of Herbig Ae/Be Stars
We present Halpha linear spectropolarimetry of a large sample of Herbig Ae/Be stars. Together with newly obtained data for 17 objects, the sample contains 56 objects, the largest such sample to date. A change in linear polarization across the Halpha line is detected in 42 (75 %) objects, which confirms the previous finding that the circumstellar environment around these stars on small spatial scales has an asymmetric structure, which is typically identified with a disk. A second outcome of this research is that we confirm that Herbig Ae stars are similar to T Tauri stars in displaying a line polarization effect, while depolarization is more common among Herbig Be stars. This finding had been suggested previously to indicate that Herbig Ae stars form in the same manner than T Tauri stars through magnetospheric accretion. It appears that the transition between these two differing polarization line effects occurs around the B7-B8 spectral type. This would in turn not only suggest that Herbig Ae stars accrete in a similar fashion as lower mass stars, but also that this accretion mechanism switches to a different type of accretion for Herbig Be stars. We report that the magnitude of the line effect caused by electron scattering close to the stars does not exceed 2%. Only a very weak correlation is found between the magnitude of the line effect and the spectral type or the strength of the Halpha line. This indicates that the detection of a line effect only relies on the geometry of the line-forming region and the geometry of the scattering electrons
On the missing second generation AGB stars in NGC 6752
In recent years the view of Galactic globular clusters as simple stellar populations has changed dramatically, it is now thought that basically all globular clusters host multiple stellar populations, each with its own chemical abundance pattern and colour–magnitude diagram sequence. Recent spectroscopic observations of asymptotic giant branch stars in the globular cluster NGC 6752 have disclosed a low [Na/Fe] abundance for the whole sample, suggesting that they are all first generation stars, and that all second generation stars fail to reach the AGB in this cluster. A scenario proposed to explain these observations invokes strong mass loss in second generation horizontal branch stars – all located at the hot side of the blue and extended horizontal branch of this cluster – possibly induced by the metal enhancement associated to radiative levitation. This enhanced mass loss would prevent second generation stars from reaching the asymptotic giant branch phase, thus explaining at the same time the low value of the ratio between horizontal branch and asymptotic giant branch stars (the R2 parameter) observed in NGC 6752. We have critically discussed this mass-loss scenario, finding that the required mass-loss rates are of the order of 10-9 M⊙ yr-1, significantly higher than current theoretical and empirical constraints. By making use of synthetic horizontal branch simulations, we demonstrate that our modelling correctly predicts the R2 parameter for NGC 6752, without the need to invoke very efficient mass loss during the core He-burning stage. As a test of our stellar models we show that we can reproduce the observed value of R2 for both M 3, a cluster of approximately the same metallicity and with a redder horizontal branch morphology, and M 13, a cluster with a horizontal branch very similar to NGC 6752. However, our simulations for the NGC 6752 horizontal branch predict however the presence of a significant fraction of second generation stars (about 50%) along the cluster asymptotic giant branch. We conclude that there is no simple explanation for the lack of second generation stars in the spectroscopically surveyed sample, although the interplay between mass loss (with low rates) and radiative levitation may play a role in explaining this puzzle
Single-world theory of the extended Wigner's friend experiment
Frauchiger and Renner have recently claimed to prove that ``Single-world interpretations of quantum theory cannot be self-consistent". This is contradicted by a construction due to Bell, inspired by Bohmian mechanics, which shows that any quantum system can be modelled in such a way that there is only one ``world" at any time, but the predictions of quantum theory are reproduced. This Bell-Bohmian theory is applied to the experiment proposed by Frauchiger and Renner, and their argument is critically examined. It is concluded that it is their version of ``standard quantum theory", incorporating state vector collapse upon measurement, that is not self-consistent
Eta Carinae and the Luminous Blue Variables
We evaluate the place of Eta Carinae amongst the class of luminous blue
variables (LBVs) and show that the LBV phenomenon is not restricted to
extremely luminous objects like Eta Car, but extends luminosities as low as
log(L/Lsun) = 5.4 - corresponding to initial masses ~25 Msun, and final masses
as low as ~10-15 Msun. We present a census of S Doradus variability, and
discuss basic LBV properties, their mass-loss behaviour, and whether at maximum
light they form pseudo-photospheres. We argue that those objects that exhibit
giant Eta Car-type eruptions are most likely related to the more common type of
S Doradus variability. Alternative atmospheric models as well as
sub-photospheric models for the instability are presented, but the true nature
of the LBV phenomenon remains as yet elusive. We end with a discussion on the
evolutionary status of LBVs - highlighting recent indications that some LBVs
may be in a direct pre-supernova state, in contradiction to the standard
paradigm for massive star evolution.Comment: 27 pages, 6 figures, Review Chapter in "Eta Carinae and the supernova
imposters" (eds R. Humphreys and K. Davidson) new version submitted to
Springe
The Structure and Evolution of Stars: Introductory Remarks
In this introductory chapter of the Special Issue entitled ‘The Structure and Evolution of Stars’, we highlight the recent major progress made in our understanding of the physics that governs stellar interiors. In so doing, we combine insight from observations, 1D evolutionary modelling and 2D + 3D rotating (magneto)hydrodynamical simulations. Therefore, a complete and compelling picture of the necessary ingredients in state-of-the-art stellar structure theory and areas in which improvementsstillneedtobemadearecontextualised. Additionally, the over-arching perspective linking all the themes of subsequent chapters is presented
Supernovae from rotating stars
The present paper discusses the main physical effects produced by stellar
rotation on presupernovae, as well as observations which confirm these effects
and their consequences for presupernova models. Rotation critically influences
the mass of the exploding cores, the mass and chemical composition of the
envelopes and the types of supernovae, as well as the properties of the
remnants and the chemical yields. In the formation of gamma-ray bursts,
rotation and the properties of rotating stars appear as the key factor. In
binaries, the interaction between axial rotation and tidal effects often leads
to interesting and unexpected results. Rotation plays a key role in shaping the
evolution and nucleosynthesis in massive stars with very low metallicities
(metallicity below about the Small Magellanic Cloud metallicity down to
Population III stars). At solar and higher metallicities, the effects of
rotation compete with those of stellar winds. In close binaries, the
synchronisation process can lock the star at a high rotation rate despite
strong mass loss and thus both effects, rotation and stellar winds, have a
strong impact. In conclusion, rotation is a key physical ingredient of the
stellar models and of presupernova stages, and the evolution both of single
stars and close binaries. Moreover, important effects are expected along the
whole cosmic history.Comment: 36 pages, 15 figures, published in Handbook of Supernovae, A.W.
Alsabti and P. Murdin (eds), Springe
Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy
published_or_final_versio
The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He II lambda 1640 in young star clusters
We introduce a Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) stellar census of R136a, the central ionizing star cluster of 30 Doradus. We present low resolution far-ultraviolet STIS spectroscopy of R136 using 17 contiguous 52 arcsec × 0.2 arcsec slits which together provide complete coverage of the central 0.85 parsec (3.4 arcsec). We provide spectral types of 90 per cent of the 57 sources brighter than mF555W = 16.0 mag within a radius of 0.5 parsec of R136a1, plus 8 additional nearby sources including R136b (O4 If/WN8). We measure wind velocities for 52 early-type stars from C IVλλ1548–51, including 16 O2–3 stars. For the first time, we spectroscopically classify all Weigelt and Baier members of R136a, which comprise three WN5 stars (a1–a3), two O supergiants (a5–a6) and three early O dwarfs (a4, a7, a8). A complete Hertzsprung–Russell diagram for the most massive O stars in R136 is provided, from which we obtain a cluster age of 1.5
+0.3−0.7
−0.7+0.3
Myr. In addition, we discuss the integrated ultraviolet spectrum of R136, and highlight the central role played by the most luminous stars in producing the prominent He II λ1640 emission line. This emission is totally dominated by very massive stars with initial masses above ∼100 M⊙. The presence of strong He II λ1640 emission in the integrated light of very young star clusters (e.g. A1 in NGC 3125) favours an initial mass function extending well beyond a conventional upper limit of 100 M⊙. We include montages of ultraviolet spectroscopy for Large Magellanic Cloud O stars in the appendix. Future studies in this series will focus on optical STIS medium resolution observations
Non-thermal emission processes in massive binaries
In this paper, I present a general discussion of several astrophysical
processes likely to play a role in the production of non-thermal emission in
massive stars, with emphasis on massive binaries. Even though the discussion
will start in the radio domain where the non-thermal emission was first
detected, the census of physical processes involved in the non-thermal emission
from massive stars shows that many spectral domains are concerned, from the
radio to the very high energies.
First, the theoretical aspects of the non-thermal emission from early-type
stars will be addressed. The main topics that will be discussed are
respectively the physics of individual stellar winds and their interaction in
binary systems, the acceleration of relativistic electrons, the magnetic field
of massive stars, and finally the non-thermal emission processes relevant to
the case of massive stars. Second, this general qualitative discussion will be
followed by a more quantitative one, devoted to the most probable scenario
where non-thermal radio emitters are massive binaries. I will show how several
stellar, wind and orbital parameters can be combined in order to make some
semi-quantitative predictions on the high-energy counterpart to the non-thermal
emission detected in the radio domain.
These theoretical considerations will be followed by a census of results
obtained so far, and related to this topic... (see paper for full abstract)Comment: 47 pages, 5 postscript figures, accepted for publication in Astronomy
and Astrophysics Review. Astronomy and Astrophysics Review, in pres
- …
