91 research outputs found

    Supported-Metal Oxide Nanoparticles-Potential Photocatalysts

    Get PDF
    Recently, nanosized metal oxides play an essential role in the photocatalytic system due to their ability to create charge carriers during the light irradiation. Metal oxide nanoparticles display excellent light absorption properties, outstanding charge transport characteristics, which are suitable in the photocatalytic system for the treatment of wastewater. Most of the photocatalysts found in the literature are in the form of powders. Only a few supported photocatalytic systems have been reported. The advantages of supported photocatalysts, such as that they produce a small pressure drop, have good mechanical stability and are easily separated from the reaction medium, make them superior to conventional powder photocatalysts. In this chapter, the definition of supported-metal oxide nanoparticles as the photocatalyst and their synthesis methodology are detailed discussed

    Facile Template In-Situ Fabrication of ZnCo2O4 Nanoparticles with Highly Photocatalytic Activities under Visible-Light Irradiation

    Get PDF
    High specific surface area ZnCo2O4 nanoparticles were prepared via a sacrificial template accelerated hydrolysis by using nanoparticles of ZnO with highly polar properties as a template. The obtained ZnCo2O4 nanoparticles were characterized by the method of scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area measurements, Transmission electron microscopy (TEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The obtained nanoparticles were performed as a photocatalyst for the degradation of methylene blue in aqueous solution under visible irradiation. The photocatalytic degradation rate of methylene blue onto the synthesized ZnCo2O4 was higher than that of commercial ZnO and synthesized ZnO template. Copyright © 2019 BCREC Group. All rights reserved

    Genome-wide association reveals host-specific genomic traits in Escherichia coli

    Get PDF
    Background Escherichia coli is an opportunistic pathogen which colonizes various host species. However, to what extent genetic lineages of E. coli are adapted or restricted to specific hosts and the genomic determinants of such adaptation or restriction is poorly understood. Results We randomly sampled E. coli isolates from four countries (Germany, UK, Spain, and Vietnam), obtained from five host species (human, pig, cattle, chicken, and wild boar) over 16 years, from both healthy and diseased hosts, to construct a collection of 1198 whole-genome sequenced E. coli isolates. We identified associations between specific E. coli lineages and the host from which they were isolated. A genome-wide association study (GWAS) identified several E. coli genes that were associated with human, cattle, or chicken hosts, whereas no genes associated with the pig host could be found. In silico characterization of nine contiguous genes (collectively designated as nan-9) associated with the human host indicated that these genes are involved in the metabolism of sialic acids (Sia). In contrast, the previously described sialic acid regulon known as sialoregulon (i.e. nanRATEK-yhcH, nanXY, and nanCMS) was not associated with any host species. In vitro growth experiments with a Δnan-9 E. coli mutant strain, using the sialic acids 5-N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) as sole carbon source, showed impaired growth behaviour compared to the wild-type. Conclusions This study provides an extensive analysis of genetic determinants which may contribute to host specificity in E. coli. Our findings should inform risk analysis and epidemiological monitoring of (antimicrobial resistant) E. coli

    Formation of ionospheric irregularities over Southeast Asia during the 2015 St. Patrickˈs Day storm

    Get PDF
    We investigate the geospace response to the 2015 St. Patrickˈs Day storm leveraging on instruments spread over Southeast Asia (SEA), covering a wide longitudinal sector of the low-latitude ionosphere. A regional characterization of the storm is provided, identifying the peculiarities of ionospheric irregularity formation. The novelties of this work are the characterization in a broad longitudinal range and the methodology relying on the integration of data acquired by Global Navigation Satellite System (GNSS) receivers, magnetometers, ionosondes, and Swarm satellites. This work is a legacy of the project EquatoRial Ionosphere Characterization in Asia (ERICA). ERICA aimed to capture the features of both crests of the equatorial ionospheric anomaly (EIA) and trough (EIT) by means of a dedicated measurement campaign. The campaign lasted from March to October 2015 and was able to observe the ionospheric variability causing effects on radio systems, GNSS in particular. The multiinstrumental and multiparametric observations of the region enabled an in-depth investigation of the response to the largest geomagnetic storm of the current solar cycle in a region scarcely reported in literature. Our work discusses the comparison between northern and southern crests of the EIA in the SEA region. The observations recorded positive and negative ionospheric storms, spread F conditions, scintillation enhancement and inhibition, and total electron content variability. The ancillary information on the local magnetic field highlights the variety of ionospheric perturbations during the different storm phases. The combined use of ionospheric bottomside, topside, and integrated information points out how the storm affects the F layer altitude and the consequent enhancement/suppression of scintillations.Published12211–122331A. Geomagnetismo e Paleomagnetismo2A. Fisica dell'alta atmosfera1IT. Reti di monitoraggio e Osservazioni5IT. Osservazioni satellitariJCR Journalope

    Complete Genome Sequence and Comparative Analysis of the Fish Pathogen Lactococcus garvieae

    Get PDF
    Lactococcus garvieae causes fatal haemorrhagic septicaemia in fish such as yellowtail. The comparative analysis of genomes of a virulent strain Lg2 and a non-virulent strain ATCC 49156 of L. garvieae revealed that the two strains shared a high degree of sequence identity, but Lg2 had a 16.5-kb capsule gene cluster that is absent in ATCC 49156. The capsule gene cluster was composed of 15 genes, of which eight genes are highly conserved with those in exopolysaccharide biosynthesis gene cluster often found in Lactococcus lactis strains. Sequence analysis of the capsule gene cluster in the less virulent strain L. garvieae Lg2-S, Lg2-derived strain, showed that two conserved genes were disrupted by a single base pair deletion, respectively. These results strongly suggest that the capsule is crucial for virulence of Lg2. The capsule gene cluster of Lg2 may be a genomic island from several features such as the presence of insertion sequences flanked on both ends, different GC content from the chromosomal average, integration into the locus syntenic to other lactococcal genome sequences, and distribution in human gut microbiomes. The analysis also predicted other potential virulence factors such as haemolysin. The present study provides new insights into understanding of the virulence mechanisms of L. garvieae in fish

    Feasibility of intensity-modulated and image-guided radiotherapy for locally advanced esophageal cancer

    Get PDF
    BACKGROUND:In this study the feasibility of intensity-modulated radiotherapy (IMRT) and tomotherapy-based image-guided radiotherapy (IGRT) for locally advanced esophageal cancer was assessed.METHODS:A retrospective study of ten patients with locally advanced esophageal cancer who underwent concurrent chemotherapy with IMRT (1) and IGRT (9) was conducted. The gross tumor volume was treated to a median dose of 70Gy (62.4-75Gy).RESULTS:At a median follow-up of 14months (1-39 months), three patients developed local failures, six patients developed distant metastases, and complications occurred in two patients (1 tracheoesophageal fistula, 1 esophageal stricture requiring repeated dilatations). No patients developed grade 3-4 pneumonitis or cardiac complications.CONCLUSIONS:IMRT and IGRT may be effective for the treatment of locally advanced esophageal cancer with acceptable complications.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Aerosol Delivery of Small Hairpin Osteopontin Blocks Pulmonary Metastasis of Breast Cancer in Mice

    Get PDF
    Metastasis to the lung may be the final step in the breast cancer-related morbidity. Conventional therapies such as chemotherapy and surgery are somewhat successful, however, metastasis-related breast cancer morbidity remains high. Thus, a novel approach to prevent breast tumor metastasis is needed.Aerosol of lentivirus-based small hairpin osteopontin was delivered into mice with breast cancer twice a week for 1 or 2 months using a nose-only inhalation system. The effects of small hairpin osteopontin on breast cancer metastasis to the lung were evaluated using near infrared imaging as well as diverse molecular techniques. Aerosol-delivered small hairpin osteopontin significantly decreased the expression level of osteopontin and altered the expression of several important metastasis-related proteins in our murine breast cancer model.Aerosol-delivered small hairpin osteopontin blocked breast cancer metastasis. Our results showed that noninvasive targeting of pulmonary osteopontin or other specific genes responsible for cancer metastasis could be used as an effective therapeutic regimen for the treatment of metastatic epithelial tumors

    Treating Severe Malaria in Pregnancy: A Review of the Evidence

    Full text link
    corecore