245 research outputs found
Recommended from our members
LSD1-mediated enhancer silencing attenuates retinoic acid signalling during pancreatic endocrine cell development.
Developmental progression depends on temporally defined changes in gene expression mediated by transient exposure of lineage intermediates to signals in the progenitor niche. To determine whether cell-intrinsic epigenetic mechanisms contribute to signal-induced transcriptional responses, here we manipulate the signalling environment and activity of the histone demethylase LSD1 during differentiation of hESC-gut tube intermediates into pancreatic endocrine cells. We identify a transient requirement for LSD1 in endocrine cell differentiation spanning a short time-window early in pancreas development, a phenotype we reproduced in mice. Examination of enhancer and transcriptome landscapes revealed that LSD1 silences transiently active retinoic acid (RA)-induced enhancers and their target genes. Furthermore, prolonged RA exposure phenocopies LSD1 inhibition, suggesting that LSD1 regulates endocrine cell differentiation by limiting the duration of RA signalling. Our findings identify LSD1-mediated enhancer silencing as a cell-intrinsic epigenetic feedback mechanism by which the duration of the transcriptional response to a developmental signal is limited
Distinct alterations in probabilistic reversal learning across at-risk mental state, first episode psychosis and persistent schizophrenia
We used a probabilistic reversal learning task to examine prediction error-driven belief updating in three clinical groups with psychosis or psychosis-like symptoms. Study 1 compared people with at-risk mental state and first episode psychosis (FEP) to matched controls. Study 2 compared people diagnosed with treatment-resistant schizophrenia (TRS) to matched controls. The design replicated our previous work showing ketamine-related perturbations in how meta-level confidence maintained behavioural policy. We applied the same computational modelling analysis here, in order to compare the pharmacological model to three groups at different stages of psychosis. Accuracy was reduced in FEP, reflecting increased tendencies to shift strategy following probabilistic errors. The TRS group also showed a greater tendency to shift choice strategies though accuracy levels were not significantly reduced. Applying the previously-used computational modelling approach, we observed that only the TRS group showed altered confidence-based modulation of responding, previously observed under ketamine administration. Overall, our behavioural findings demonstrated resemblance between clinical groups (FEP and TRS) and ketamine in terms of a reduction in stabilisation of responding in a noisy environment. The computational analysis suggested that TRS, but not FEP, replicates ketamine effects but we consider the computational findings preliminary given limitations in performance of the model
Morphology and Nanomechanics of Sensory Neurons Growth Cones following Peripheral Nerve Injury
A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins
Ligand-Receptor Interactions
The formation and dissociation of specific noncovalent interactions between a
variety of macromolecules play a crucial role in the function of biological
systems. During the last few years, three main lines of research led to a
dramatic improvement of our understanding of these important phenomena. First,
combination of genetic engineering and X ray cristallography made available a
simultaneous knowledg of the precise structure and affinity of series or
related ligand-receptor systems differing by a few well-defined atoms. Second,
improvement of computer power and simulation techniques allowed extended
exploration of the interaction of realistic macromolecules. Third, simultaneous
development of a variety of techniques based on atomic force microscopy,
hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or
flexible transducers yielded direct experimental information of the behavior of
single ligand receptor bonds. At the same time, investigation of well defined
cellular models raised the interest of biologists to the kinetic and mechanical
properties of cell membrane receptors. The aim of this review is to give a
description of these advances that benefitted from a largely multidisciplinar
approach
Investigating Unique Environmental Contributions to the Neural Representation of Written Words: A Monozygotic Twin Study
The visual word form area (VWFA) is a region of left inferior occipitotemporal cortex that is critically involved in visual word recognition. Previous studies have investigated whether and how experience shapes the functional characteristics of VWFA by comparing neural response magnitude in response to words and nonwords. Conflicting results have been obtained, however, perhaps because response magnitude can be influenced by other factors such as attention. In this study, we measured neural activity in monozygotic twins, using functional magnetic resonance imaging. This allowed us to quantify differences in unique environmental contributions to neural activation evoked by words, pseudowords, consonant strings, and false fonts in the VWFA and striate cortex. The results demonstrate significantly greater effects of unique environment in the word and pseudoword conditions compared to the consonant string and false font conditions both in VWFA and in left striate cortex. These findings provide direct evidence for environmental contributions to the neural architecture for reading, and suggest that learning phonology and/or orthographic patterns plays the biggest role in shaping that architecture
Cortical Disinhibition, Attractor Dynamics, and Belief Updating in Schizophrenia
Genetic and pharmacological evidence implicates N-methyl-D-aspartate receptor (NMDAR) dysfunction in the pathophysiology of schizophrenia. Dysfunction of this key receptor – if localised to inhibitory interneurons – could cause a net disinhibition of cortex and increase in ‘noise’. These effects can be computationally modelled in a variety of ways: by reducing the precision in Bayesian models of behaviour, by estimating neuronal excitability changes in schizophrenia from evoked responses, or – as described in detail here – by modelling abnormal belief updating in a probabilistic inference task. Features of belief updating in schizophrenia include greater updating to unexpected evidence, lower updating to consistent evidence, and greater stochasticity in responding. All of these features can be explained by a loss of stability of ‘attractor states’ in cortex and the representations they encode. Indeed, a hierarchical Bayesian model of belief updating indicates that subjects with schizophrenia have a consistently increased ‘belief instability’ parameter. This instability could be a direct result of cortical disinhibition: this hypothesis should be explored in future studies
- …