101 research outputs found

    A novel method using nuclear magnetic resonance for plasma protein binding assessment in drug discovery programs.

    Get PDF
    A new methodology based on Nuclear Magnetic Resonance (NMR) was developed to determine plasma protein binding (PPB) of drug candidates in drug discovery programs. A strong correlation was found between the attenuation of NMR signals of diverse drugs in the presence of different plasma concentrations and their fraction bound (f b ) reported in the literature. Based on these results, a protocol for a rapid calculation of f b of small molecules was established. The advantage of using plasma instead of purified recombinant proteins and the possibility of pool analysis to increase throughput were also evaluated. This novel methodology proved to be very versatile, cost-effective, fast and suitable for automation. As a plus, it contemporarily provides a quality check and solubility of the compound

    Broad-spectrum coronavirus 3C-like protease peptidomimetic inhibitors effectively block SARS-CoV-2 replication in cells: Design, synthesis, biological evaluation, and X-ray structure determination

    Get PDF
    Despite the approval of vaccines, monoclonal antibodies and restrictions during the pandemic, the demand for new efficacious and safe antivirals is compelling to boost the therapeutic arsenal against the COVID-19. The viral 3-chymotrypsin-like protease (3CLpro) is an essential enzyme for replication with high homology in the active site across CoVs and variants showing an almost unique specificity for Leu-Gln as P2–P1 residues, allowing the development of broad-spectrum inhibitors. The design, synthesis, biological activity, and cocrystal structural information of newly conceived peptidomimetic covalent reversible inhibitors are herein described. The inhibitors display an aldehyde warhead, a Gln mimetic at P1 and modified P2–P3 residues. Particularly, functionalized proline residues were inserted at P2 to stabilize the ÎČ-turn like bioactive conformation, modulating the affinity. The most potent compounds displayed low/sub-nM potency against the 3CLpro of SARS-CoV-2 and MERS-CoV and inhibited viral replication of three human CoVs, i.e. SARS-CoV-2, MERS-CoV, and HCoV 229 in different cell lines. Particularly, derivative 12 exhibited nM-low ÎŒM antiviral activity depending on the virus, and the highest selectivity index. Some compounds were co-crystallized with SARS-CoV-2 3CLpro validating our design. Altogether, these results foster future work toward broad-spectrum 3CLpro inhibitors to challenge CoVs related pandemics

    Efficacy of selective histone deacetylase 6 inhibition in mouse models of Pseudomonas aeruginosa infection: A new glimpse for reducing inflammation and infection in cystic fibrosis

    Get PDF
    The latest studies identified the histone deacetylase (HDAC) class of enzymes as strategic components of the complex molecular machinery underlying inflammation in cystic fibrosis (CF). Compelling new support has been provided for HDAC6 isoform as a key player in the generation of the dysregulated proinflammatory phenotype in CF, as well as in the immune response to the persistent bacterial infection accompanying CF patients. We herein provide in vivo proof-of-concept (PoC) of the efficacy of selective HDAC6 inhibition in contrasting the pro-inflammatory phenotype in a mouse model of chronic P. aeruginosa respiratory infection. Upon careful selection and in-house re-profiling (in vitro and cell-based assessment of acetylated tubulin level through Western blot analysis) of three potent and selective HDAC6 inhibitors as putative candidates for the PoC, we engaged the best performing compound 2 for pre-clinical studies. Compound 2 demonstrated no toxicity and robust anti-inflammatory profile in a mouse model of chronic P. aeruginosa respiratory infection upon repeated aerosol administration. A significant reduction of leukocyte recruitment in the airways, in particular neutrophils, was observed in compound 2-treated mice in comparison with the vehicle; moreover, quantitative immunoassays confirmed a significant reduction of chemokines and cytokines in lung homogenate. This effect was also associated with a modest reduced bacterial load after compound 2-treatment in mice compared to the vehicle. Our study is of particular significance since it demonstrates for the first time the utility of selective drug-like HDAC6 inhibitors in a relevant in vivo model of chronic P. aeruginosa infection, thus supporting their potential application for reverting CF phenotype

    Nirmatrelvir treatment of SARS-CoV-2-infected mice blunts antiviral adaptive immune responses

    Get PDF
    Alongside vaccines, antiviral drugs are becoming an integral part of our response to the SARS-CoV-2 pandemic. Nirmatrelvir-an orally available inhibitor of the 3-chymotrypsin-like cysteine protease-has been shown to reduce the risk of progression to severe COVID-19. However, the impact of nirmatrelvir treatment on the development of SARS-CoV-2-specific adaptive immune responses is unknown. Here, by using mouse models of SARS-CoV-2 infection, we show that nirmatrelvir administration blunts the development of SARS-CoV-2-specific antibody and T cell responses. Accordingly, upon secondary challenge, nirmatrelvir-treated mice recruited significantly fewer memory T and B cells to the infected lungs and mediastinal lymph nodes, respectively. Together, the data highlight a potential negative impact of nirmatrelvir treatment with important implications for clinical management and might help explain the virological and/or symptomatic relapse after treatment completion reported in some individuals

    Synthesis and Biological Evaluation of RGD–Cryptophycin Conjugates for Targeted Drug Delivery

    Get PDF
    BorbĂ©ly AN, Figueras AgustĂ­ E, Martins A, et al. Synthesis and Biological Evaluation of RGD–Cryptophycin Conjugates for Targeted Drug Delivery. Pharmaceutics. 2019;11(4): 151.Cryptophycins are potent tubulin polymerization inhibitors with picomolar antiproliferative potency in vitro and activity against multidrug-resistant (MDR) cancer cells. Because of neurotoxic side effects and limited efficacy in vivo, cryptophycin-52 failed as a clinical candidate in cancer treatment. However, this class of compounds has emerged as attractive payloads for tumor-targeting applications. In this study, cryptophycin was conjugated to the cyclopeptide c(RGDfK), targeting integrin αvÎČ3, across the protease-cleavable Val-Cit linker and two different self-immolative spacers. Plasma metabolic stability studies in vitro showed that our selected payload displays an improved stability compared to the parent compound, while the stability of the conjugates is strongly influenced by the self-immolative moiety. Cathepsin B cleavage assays revealed that modifications in the linker lead to different drug release profiles. Antiproliferative effects of Arg-Gly-Asp (RGD)–cryptophycin conjugates were evaluated on M21 and M21-L human melanoma cell lines. The low nanomolar in vitro activity of the novel conjugates was associated with inferior selectivity for cell lines with different integrin αvÎČ3 expression levels. To elucidate the drug delivery process, cryptophycin was replaced by an infrared dye and the obtained conjugates were studied by confocal microscop

    Structural characterization of the Hepatitis C Virus NS3 protease from genotype 3a: The basis of the genotype 1b vs. 3a inhibitor potency shift

    Get PDF
    AbstractThe first structural characterization of the genotype 3a Hepatitis C Virus NS3 protease is reported, providing insight into the differential susceptibility of 1b and 3a proteases to certain inhibitors. Interaction of the 3a NS3 protease with a P2–P4 macrocyclic and a linear phenethylamide inhibitor was investigated. In addition, the effect of the NS4A cofactor binding on the conformation of the protease was analyzed. Complexation of NS3 with the phenethylamide inhibitor significantly stabilizes the protease but binding does not involve residues 168 and 123, two key amino acids underlying the different inhibition of genotype 1b vs. 3a proteases by P2–P4 macrocycles. Therefore, we studied the dynamic behavior of these two residues in the phenethylamide complex, serving as a model of the situation in the apo 3a protein, in order to explore the structural basis of the inhibition potency shift between the proteases of the genotypes 1b and 3a

    Consolidative thoracic radiation therapy for extensive-stage small cell lung cancer in the era of first-line chemoimmunotherapy: preclinical data and a retrospective study in Southern Italy

    Get PDF
    BackgroundConsolidative thoracic radiotherapy (TRT) has been commonly used in the management of extensive-stage small cell lung cancer (ES-SCLC). Nevertheless, phase III trials exploring first-line chemoimmunotherapy have excluded this treatment approach. However, there is a strong biological rationale to support the use of radiotherapy (RT) as a boost to sustain anti-tumor immune responses. Currently, the benefit of TRT after chemoimmunotherapy remains unclear. The present report describes the real-world experiences of 120 patients with ES-SCLC treated with different chemoimmunotherapy combinations. Preclinical data supporting the hypothesis of anti-tumor immune responses induced by RT are also presented.MethodsA total of 120 ES-SCLC patients treated with chemoimmunotherapy since 2019 in the South of Italy were retrospectively analyzed. None of the patients included in the analysis experienced disease progression after undergoing first-line chemoimmunotherapy. Of these, 59 patients underwent TRT after a multidisciplinary decision by the treatment team. Patient characteristics, chemoimmunotherapy schedule, and timing of TRT onset were assessed. Safety served as the primary endpoint, while efficacy measured in terms of overall survival (OS) and progression-free survival (PFS) was used as the secondary endpoint. Immune pathway activation induced by RT in SCLC cells was explored to investigate the biological rationale for combining RT and immunotherapy.ResultsPreclinical data supported the activation of innate immune pathways, including the STimulator of INterferon pathway (STING), gamma-interferon-inducible protein (IFI-16), and mitochondrial antiviral-signaling protein (MAVS) related to DNA and RNA release. Clinical data showed that TRT was associated with a good safety profile. Of the 59 patients treated with TRT, only 10% experienced radiation toxicity, while no ≄ G3 radiation-induced adverse events occurred. The median time for TRT onset after cycles of chemoimmunotherapy was 62 days. Total radiation dose and fraction dose of TRT include from 30 Gy in 10 fractions, up to definitive dose in selected patients. Consolidative TRT was associated with a significantly longer PFS than systemic therapy alone (one-year PFS of 61% vs. 31%, p<0.001), with a trend toward improved OS (one-year OS of 80% vs. 61%, p=0.027).ConclusionMulti-center data from establishments in the South of Italy provide a general confidence in using TRT as a consolidative strategy after chemoimmunotherapy. Considering the limits of a restrospective analysis, these preliminary results support the feasibility of the approach and encourage a prospective evaluation
    • 

    corecore