60 research outputs found

    Expression in Escherichia coli, Functional Characterization, and Tissue Distribution of Isoforms A and B of the Phosphate Carrier from Bovine Mitochondria

    Get PDF
    The two isoforms of the mammalian mitochondrial phosphate carrier (PiC), A and B, differing in the sequence near the N terminus, arise from alternative splicing of a primary transcript of the PiC gene (Dolce, V., Iacobazzi, V., Palmieri, F., and Walker, J. E. (1994) J. Biol. Chem. 269, 10451-10460). To date, the PiC isoforms A and B have not been studied at the protein level. To explore the tissue-distribution and the potential functional differences between the two isoforms, polyclonal site-directed antibodies specific for PiC-A and PiC-B were raised, and the two bovine isoforms were obtained by expression in Escherichia coli and reconstituted into phospholipid vesicles. Western blot analysis demonstrated that isoform A is present in high amounts in heart, skeletal muscle, and diaphragm mitochondria, whereas isoform B is present in the mitochondria of all tissues examined. Heart and liver bovine mitochondria contained 69 and 0 pmol of PiC-A/mg of protein, and 10 and 8 pmol of PiC-B/mg of protein, respectively. In the reconstituted system the pure recombinant isoforms A and B both catalyzed the two known modes of transport (Pi/Pi antiport and Pi/H+ symport) and exhibited similar properties of substrate specificity and inhibitor sensitivity. However, they strongly differed in their kinetic parameters. The transport affinities of isoform B for phosphate and arsenate were found to be 3-fold lower than those of isoform A. Furthermore, the maximum transport rate of isoform B is about 3-fold higher than that of isoform A. These results support the hypothesis that the sequence divergence between PiC-A and PiC-B may have functional significance in determining the affinity and the translocation rate of the substrate through the PiC molecule

    Identification of the Human Mitochondrial Oxodicarboxylate Carrier BACTERIAL EXPRESSION, RECONSTITUTION, FUNCTIONAL CHARACTERIZATION, TISSUE DISTRIBUTION, AND CHROMOSOMAL LOCATION

    Get PDF
    In Saccharomyces cerevisiae, the genes ODC1 and ODC2 encode isoforms of the oxodicarboxylate carrier. They both transport C5-C7 oxodicarboxylates across the inner membranes of mitochondria and are members of the family of mitochondrial carrier proteins. Orthologs are encoded in the genomes of Caenorhabditis elegans and Drosophila melanogaster, and a human expressed sequence tag (EST) encodes part of a closely related protein. Information from the EST has been used to complete the human cDNA sequence. This sequence has been used to map the gene to chromosome 14q11.2 and to show that the gene is expressed in all tissues that were examined. The human protein was produced by overexpression in Escherichia coli, purified, and reconstituted into phospholipid vesicles. It has similar transport characteristics to the yeast oxodicarboxylate carrier proteins (ODCs). Both the human and yeast ODCs catalyzed the transport of the oxodicarboxylates 2-oxoadipate and 2-oxoglutarate by a counter-exchange mechanism. Adipate, glutarate, and to a lesser extent, pimelate, 2-oxopimelate, 2-aminoadipate, oxaloacetate, and citrate were also transported by the human ODC. The main differences between the human and yeast ODCs are that 2-aminoadipate is transported by the former but not by the latter, whereas malate is transported by the yeast ODCs but not by the human ortholog. In mammals, 2-oxoadipate is a common intermediate in the catabolism of lysine, tryptophan, and hydroxylysine. It is transported from the cytoplasm into mitochondria where it is converted into acetyl-CoA. Defects in human ODC are likely to be a cause of 2-oxoadipate acidemia, an inborn error of metabolism of lysine, tryptophan, and hydroxylysine

    The Mitochondrial Ornithine Transporter BACTERIAL EXPRESSION, RECONSTITUTION, FUNCTIONAL CHARACTERIZATION, AND TISSUE DISTRIBUTION OF TWO HUMAN ISOFORMS

    Get PDF
    Two isoforms of the human ornithine carrier, ORC1 and ORC2, have been identified by overexpression of the proteins in bacteria and by study of the transport properties of the purified proteins reconstituted into liposomes. Both transport L-isomers of ornithine, lysine, arginine, and citrulline by exchange and by unidirectional mechanisms, and they are inactivated by the same inhibitors. ORC2 has a broader specificity than ORC1, and L- and D-histidine, L-homoarginine, and D-isomers of ornithine, lysine, and ornithine are all substrates. Both proteins are expressed in a wide range of human tissues, but ORC1 is the predominant form. The highest levels of expression of both isoforms are in the liver. Five mutant forms of ORC1 associated with the human disease hyperornithinemia-hyperammonemia-homocitrullinuria were also made. The mutations abolish the transport properties of the protein. In patients with hyperornithinemia-hyperammonemia-homocitrullinuria, isoform ORC2 is unmodified, and its presence compensates partially for defective ORC1

    The sequences of human and bovine genes of the phosphate carrier from mitochondria contain evidence of alternatively spliced forms.

    Get PDF
    The sequences of the human and bovine genes for the phosphate carrier from the inner membranes of mitochondria have been determined. The genes have similar structures and each is divided into nine exons. In both genes, two exons, named IIIA and IIIB, are closely related, and they appear to the alternatively spliced. The human exon IIIB sequence is found in a published human heart cDNA sequence, and bovine exon IIIA forms part of a published bovine heart cDNA sequence. By further examination of the human heart cDNA library, sequences arising from both alternatively spliced forms of the phosphate carrier have been characterized. Both forms were also found in several bovine tissues, but the ratios of expression of the two forms varied. The form containing exon IIIA was expressed most highly in bovine heart and liver, less highly in brain and kidney, and only in low amounts in lung. The opposite hierarchy was found for the form containing exon IIIB; it was most highly expressed in lung and least in heart and liver. The alternative splicing mechanism affects amino acids 4-45 of the mature phosphate carrier protein, which is believed to form one of six transmembrane segments of the phosphate carrier and to emerge into a large extramembranous loop. The alternative splicing mechanism changes 13 and 11 amino acids in the human and bovine carrier proteins, respectively. As the function of this region of the phosphate carrier is not known, the effects of the changes on carrier function are not understood at present

    The Sequence, Bacterial Expression, and Functional Reconstitution of the Rat Mitochondrial Dicarboxylate Transporter Cloned via Distant Homologs in Yeast and Caenorhabditis elegans

    Get PDF
    The dicarboxylate carrier (DIC) belongs to a family of transport proteins found in the inner mitochondrial membranes. The biochemical properties of the mammalian protein have been characterized, but the protein is not abundant. It is difficult to purify and had not been sequenced. We have used the sequence of the distantly related yeast DIC to identify a related protein encoded in the genome of Caenorhabditis elegans. Then, related murine expressed sequence tags were identified with the worm sequence, and the murine sequence was used to isolate the cDNA for the rat homolog. The sequences of the worm and rat proteins have features characteristic of the family of mitochondrial transport proteins. Both proteins were expressed in bacteria and reconstituted into phospholipid vesicles where their transport characteristics closely resembled those of whole rat mitochondria and of the rat DIC reconstituted into vesicles. As expected from the role of the DIC in gluconeogenesis and ureogenesis, its transcripts were detected in rat liver and kidney, but unexpectedly, they were also detected in rat heart and brain tissues where the protein may fulfill other roles, possibly in supplying substrates to the Krebs cycle

    Calorimetry and FTIR reveal the ability of URG7 protein to modify the aggregation state of both cell lysate and amylogenic α-synuclein

    Get PDF
    Differential scanning calorimetry and FITR analyses allowed to investigate the role of URG7 (up-regulated gene clone 7) protein involved in the development of hepatocellular carcinoma induced by hepatitis B virus infection, on the physical structure both of lysates of human hepatoblastoma cells (HepG2) stressed with tunicamycin and α-synuclein, one of the proteins associated with neurogenerative diseases. The protein-water interfacial region was identified and correlated with protein structure. DSC results confirm through the interfacial water behavior that URG7 is able to act in two ways: it maintains the interfacial water stability and controls the mobile fraction level, thereby the flexibility and the protein folding. The mobile water phase increases strongly for cells exposed to α-synuclein, demonstrating an important influence on water hydration. FTIR results evidenced an increase of about 30% of cross β structures in cells exposed to α-synuclein, associated with aggregated proteins. In stress conditions, URG7 was able to maintain the same fraction of mobile water as untreated cells. URG7 was able to restore the water reorientation ability around the complex lysate system and reduced abnormal protein folding

    Biochemical characterization of a new mitochondrial transporter of dephosphocoenzyme A in Drosophila melanogaster

    Get PDF
    none13noCoA is an essential cofactor that holds a central role in cell metabolism. Although its biosynthetic pathway is conserved across the three domains of life, the subcellular localization of the eukaryotic biosynthetic enzymes and the mechanism behind the cytosolic and mitochondrial CoA pools compartmentalization are still under debate. In humans, the transport of CoA across the inner mitochondrial membrane has been ascribed to two related genes, SLC25A16 and SLC25A42 whereas in D. melanogaster genome only one gene is present, CG4241, phylogenetically closer to SLC25A42. CG4241 encodes two alternatively spliced isoforms, dPCoAC-A and dPCoAC-B. Both isoforms were expressed in Escherichia coli, but only dPCoAC-A was successfully reconstituted into liposomes, where transported dPCoA and, to a lesser extent, ADP and dADP but not CoA, which was a powerful competitive inhibitor. The expression of both isoforms in a Saccharomyces cerevisiae strain lacking the endogenous putative mitochondrial CoA carrier restored the growth on respiratory carbon sources and the mitochondrial levels of CoA. The results reported here and the proposed subcellular localization of some of the enzymes of the fruit fly CoA biosynthetic pathway, suggest that dPCoA may be synthesized and phosphorylated to CoA in the matrix, but it can also be transported by dPCoAC to the cytosol, where it may be phosphorylated to CoA by the monofunctional dPCoA kinase. Thus, dPCoAC may connect the cytosolic and mitochondrial reactions of the CoA biosynthetic pathway without allowing the two CoA pools to get in contact.Vozza, Angelo; Leonardis, Francesco De; Paradies, Eleonora; Grassi, Anna De; Pierri, Ciro Leonardo; Parisi, Giovanni; Marobbio, Carlo Marya Thomas; Lasorsa, Francesco Massimo; Muto, Luigina; Capobianco, Loredana; Dolce, Vincenza; Raho, Susanna; Fiermonte, GiuseppeVozza, Angelo; Leonardis, Francesco De; Paradies, Eleonora; Grassi, Anna De; Pierri, Ciro Leonardo; Parisi, Giovanni; Marobbio, Carlo Marya Thomas; Lasorsa, Francesco Massimo; Muto, Luigina; Capobianco, Loredana; Dolce, Vincenza; Raho, Susanna; Fiermonte, Giusepp

    How Detergent Impacts Membrane Proteins: Atomic-Level Views of Mitochondrial Carriers in Dodecylphosphocholine.

    Get PDF
    Characterizing the structure of membrane proteins (MPs) generally requires extraction from their native environment, most commonly with detergents. Yet, the physicochemical properties of detergent micelles and lipid bilayers differ markedly and could alter the structural organization of MPs, albeit without general rules. Dodecylphosphocholine (DPC) is the most widely used detergent for MP structure determination by NMR, but the physiological relevance of several prominent structures has been questioned, though indirectly, by other biophysical techniques, e.g., functional/thermostability assay (TSA) and molecular dynamics (MD) simulations. Here, we resolve unambiguously this controversy by probing the functional relevance of three different mitochondrial carriers (MCs) in DPC at the atomic level, using an exhaustive set of solution-NMR experiments, complemented by functional/TSA and MD data. Our results provide atomic-level insight into the structure, substrate interaction and dynamics of the detergent-membrane protein complexes and demonstrates cogently that, while high-resolution NMR signals can be obtained for MCs in DPC, they systematically correspond to nonfunctional states
    corecore