7,656 research outputs found

    Multi-segment foot kinematics and plantar fascia strain during treadmill and overground running

    Get PDF
    Although physiologically beneficial, running is known to be associated with a high incidence of chronic injuries. Excessive coronal and transverse plane motions of the foot segments and strain experienced by the plantar fascia are linked to the development of a number of chronic injuries. This study examined differences in multi-segment foot kinematics and plantar fascia strain during treadmill and overground running. Twelve male recreational runners ran at 4.0 m.s-1 in both treadmill and overground conditions. Multi-segment foot kinematics and plantar fascia strain were measured using an eight-camera motion analysis system and contrasted using paired samples t-tests. The results showed that plantar fascia strain was significantly greater in the overground condition (8.23 ± 2.77) compared to the treadmill (5.53 ± 2.25). Given the proposed relationship between excessive plantar fascia strain and the etiology of injury, overground running may be associated with a higher incidence of injury although further work is necessary before causation can be confirmed

    Detracking High School Physical Science Classes through Teacher Efficacy: An Action Research Study

    Get PDF
    This study uses the action research method to determine whether students enrolled in a basic science course (Physical Science College Prep) can be successful learning more advanced material (Physical Science Advanced) by increasing teacher efficacy. Currently, there are three levels of Physical Science courses taught at the study school, a high school in South Carolina, USA. The most basic course, Physical Science College Prep, is comprised of 76% minority students, and 56% who receive a free or reduced-cost lunch. In the spring semester of 2017, a group of students (n = 14) completed two units of study: Unit One - Experimental Design and Unit Two - Classification of Matter. The students experienced a variety of teaching methods and techniques, including problem-based learning, lectures, classroom discussions, and laboratory experiments. The results showed that the students were able to maintain a B-grade average. In fact, the overall average grades actually increased from 87.08 in Unit One to 87.67 in Unit Two. The results of this study accompany a recommendation for district and school administrators to de-track the Physical Science course. Instead of offering the more basic College Prep course, all students can be successful in the Advanced and Honors-level courses

    Investigation of single, binary, and ternary metal oxides of iridium, rhodium, and palladium for neural interfacing applications

    Get PDF
    In this dissertation, thin film single, binary, and ternary metal oxides of iridium (Ir), ruthenium (Ru), rhodium (Rh), and palladium (Pd) were synthesized for use as electrode/microelectrode coatings for neural interfacing applications using DC reactive magnetron sputtering. Synthesis conditions which enhanced the electrochemical properties of films as measured by cyclic voltammetry and electrochemical impedance spectroscopy in a phosphate buffered saline solution of the single metal oxides were identified to be 30 mTorr working pressure, 20% oxygen partial pressure, and cathode power densities ≤ 4.9 W/cm2. These parameters were then used to develop the binary and ternary metal oxide films. The binary metal oxides studied included Ir(1-x)Mx where M = Pd, Rh, Ru, and the ternary metal oxides studied included Ir(1-x-z)MxMz’, where M,M´ = Pd, Rh, and Ru. The binary metal oxide concentrations which produce robust microstructures and exceptional electrochemical performance have been identified to be x ≥ 0.5 for Ir(1-x)RhxOy, x ≥ 0.34 for Ir(1-x)RuxOy, and x ≥ 0.14 for Ir(1-x)PdxOy. Similar compositional ranges have been identified for the ternary metal oxides and include x ≥ 0.16 and z ≥ 0.05 for Ir(1-x-z)PdxRuzOy, x ≥ 0.13 and z ≥ 0.04 for Ir(1-x-z)PdxRhzOy, and x ≥ 0.2 and z ≥ 0.14 for Ir(1-x-z)RuxRhzOy

    Effect of front and back squat techniques on peak loads experienced by the Achilles tendon

    Get PDF
    Background A primary technique in the discipline of strength and conditioning the squat has two principal ‘back and front’ variants. Despite the physiological and strength benefits of the squat, the propensity for musculoskeletal injury is high. The current investigation examined the influence of the front and back squat variations on the load experienced by the Achilles tendon. Material/Methods Achilles tendon loads were obtained from eighteen experienced male participants as they completed both back and front squats. Differences between squat conditions were examined using Bonferroni adjusted (p = 0.0125) paired t-tests. Results The results showed that the peak Achilles tendon load was significantly greater in the back squat (2.67 ±0.74 B.W) condition compared to the front squat (2.37 ±0.69 B.W). Conclusions Given the proposed relationship between the magnitude of the load experienced by the Achilles tendon and tendon pathology, the back squat appears to place lifters at greater risk from Achilles tendon injury. Therefore, it may be prudent for lifters who are predisposed to Achilles tendon pathology to utilize the front squat in their training

    Effects of foot orthoses on patellofemoral load in recreational runners

    Get PDF
    The most common chronic injury in recreational runners is patellofemoral pain. Whilst there is evidence to suggest that orthotic intervention may reduce symptoms in runners who experience patellofemoral pain the mechanism by which their clinical effects are mediated is currently poorly understood. The aim of the current investigation was to determine whether foot orthoses reduce the loads experienced by the patellofemoral joint during running. Patellofemoral loads were obtained from fifteen male runners who ran at 4.0 m·s-1. Patellofemoral loads with and without orthotics were contrasted using paired t-tests. The results showed that patellofemoral joint loads were significantly reduced as a function of running with the orthotic device. The current investigation indicates that through reductions in patellofemoral loads, foot orthoses may serve to reduce the incidence of chronic running injuries at this joint

    Energy-based temporal neural networks for imputing missing values

    Get PDF
    Imputing missing values in high dimensional time series is a difficult problem. There have been some approaches to the problem [11,8] where neural architectures were trained as probabilistic models of the data. However, we argue that this approach is not optimal. We propose to view temporal neural networks with latent variables as energy-based models and train them for missing value recovery directly. In this paper we introduce two energy-based models. The first model is based on a one dimensional convolution and the second model utilizes a recurrent neural network. We demonstrate how ideas from the energy-based learning framework can be used to train these models to recover missing values. The models are evaluated on a motion capture dataset

    Hfq binding changes the structure of Escherichia coli small noncoding RNAs OxyS and RprA, which are involved in the riboregulation of rpoS

    Get PDF
    OxyS and RprA are two small noncoding RNAs (sRNAs) that modulate the expression of rpoS, encoding an alternative sigma factor that activates transcription of multiple Escherichia coli stress-response genes. While RprA activates rpoS for translation, OxyS down-regulates the transcript. Crucially, the RNA binding protein Hfq is required for both sRNAs to function, although the specific role played by Hfq remains unclear. We have investigated RprA and OxyS interactions with Hfq using biochemical and biophysical approaches. In particular, we have obtained the molecular envelopes of the Hfq–sRNA complexes using small-angle scattering methods, which reveal key molecular details. These data indicate that Hfq does not substantially change shape upon complex formation, whereas the sRNAs do. We link the impact of Hfq binding, and the sRNA structural changes induced, to transcript stability with respect to RNase E degradation. In light of these findings, we discuss the role of Hfq in the opposing regulatory functions played by RprA and OxyS in rpoS regulation
    corecore