
Energy-Based Temporal Neural Networks for
Imputing Missing Values

Philemon Brakel and Benjamin Schrauwen

Department of Electronics and Information Systems, Ghent University,
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

{philemon.brakel,benjamin.schrauwen}@elis.ugent.be

Abstract. Imputing missing values in high dimensional time series is a
difficult problem. There have been some approaches to the problem [11,
8] where neural architectures were trained as probabilistic models of the
data. However, we argue that this approach is not optimal. We propose
to view temporal neural networks with latent variables as energy-based
models and train them for missing value recovery directly. In this paper
we introduce two energy-based models. The first model is based on a one
dimensional convolution and the second model utilizes a recurrent neu-
ral network. We demonstrate how ideas from the energy-based learning
framework can be used to train these models to recover missing values.
The models are evaluated on a motion capture dataset.

Keywords: neural networks, energy-based models, time series, missing
values, machine learning, optimization

1 Introduction

Many interesting datasets in fields like meteorology, finance, and physics are
high dimensional time series. To make optimal use of such data, it is often
necessary to impute missing values. Unfortunately, this can be a very challenging
task because many multivariate time series are generated by complex non-linear
processes. Simple techniques like nearest neighbour interpolation treat the data
as independent, and ignore the temporal component.

Recently, a model for high dimensional non-linear time series called the Con-
ditional Restricted Boltzmann Machines (CRBMs) [11] has been used to recon-
struct motion capture data. This model is trained to learn a density over a frame
in a sequence, conditioned on a fixed number of previously observed frames. Since
inference in these models is intractable, sampling or mean-field approximations
are required.

When the task is to reconstruct some missing values based on the remaining
observed data, it is only this conditional inference that needs to be optimized.
If an optimization method is used for inference, we don’t have to care about the
density the model assigns to regions that are far away from the data, because
we will not start the approximate inference procedure in those regions anyway.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55728267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Philemon Brakel and Benjamin Schrauwen

By using temporal energy models that are directly trained to reconstruct a
subset of the input data conditioned on the remaining observations, we circum-
vent some of the problems probabilistic models have to deal with. Moreover,
these kind of models make it easier to use features that are generated by compli-
cated functions that can be chosen to represent prior knowledge about the prob-
lem domain. To demonstrate how temporal energy-based models can be trained
to reconstruct sequential data, we will train both a convolutional energy-based
model and one that is based on a recurrent neural network.

Dynamic factor graphs [8] are temporal energy-based models as well and have
also been used to reconstruct motion capture data. This approach is somewhat
similar to ours but like the CRBM, the model was trained to maximize the data
likelihood.

2 Energy-Based Models

An Energy-Based Model (EBM) [6] defines a function E(·) that maps an obser-
vation vector v to an energy value. Many probabilistic and deterministic models
can be seen as models that capture dependencies between variables by assigning
a score to their joint configuration. For probabilistic models, this score is the
negative log-likelihood and for Principal Component Analysis, for example, this
is the reconstruction error. Recently, energy-based models have been used to
train deep models of images [9].

To model complex processes, it is common practice to introduce latent or ‘hid-
den’ variables that represent interactions between the observed variables. This
leads to an energy function of the form E(v,h), where h are the hidden vari-
ables, which need to be marginalized out to obtain the energy value for v. This
summation (or integration) can be greatly simplified by designing models such
that the hidden variables are conditionally independent given an observation.
A model that satisfies this independence condition is the Restricted Boltzmann
Machine (RBM) [3, 4] which is a often used to build deep belief networks [5].

The energy-based framework allows one to come up with new architectures
or optimization algorithms for statistical models without being constrained by
probabilistic assumptions. Optimizing the likelihood makes sense if the goal is
to learn a good statistical model of the data. Unfortunately, the maximum like-
lihood objective is often intractable for more complex architectures because of
the requirement to compute a normalization constant. This intractability has led
to the development of learning algorithms that rely on approximations of max-
imum likelihood learning like contrastive divergence [4] and pseudo-likelihood
learning [1]. However, in an energy-based framework there is no reason to rule
out alternatives for the likelihood objective that circumvent the normalization
problem.

In the current paper we are not interested in the estimation of a good model
of the data itself but in a model that performs well at restoring missing values
given other values that have been observed. We will describe a way to discrim-



Energy-Based Temporal Neural Networks 3

inatively train energy-based models for this task that is inspired by work on
image processing [2].

3 The Convolutional Energy-Based Model

We will call the first model we will investigate the Convolutional Energy-Based
Model (CEBM). Let V be a sequence of data vectors {v1, · · · ,vT } indexed
by time index t. The CEBM has an energy function that is defined as a one
dimensional convolution over a sequence of data combined with a quadratic
term and is given by

E(V,H) =

T∑
t=1

(
‖vt − bv‖2

2σ2
− hT

t gconv(V, t)

)
, (1)

where bv is a vector with biases for the visible units and H are a set of binary
hidden units. The function gconv(·) is defined by

gconv(V, t) = W(vt−k ⊕ · · · ⊕ vt ⊕ · · · ⊕ vt+k), (2)

for k < t < T − k and equal to zero for all other values of t. The matrix W
contains trainable connection weights and the operator ⊕ signifies concatenation.
The value k determines the number of frames that each hidden unit is a function
of. This model has the same energy function as the convolutional RBM [7] and
the main difference is the way in which training and inference are done. See Fig.
1a for a graphical representation of the convolutional architecture.

To compute the free energy of a sequence V, we have to sum over all possible
values of H. Fortunately, because the hidden units are independent given the
output of the function gconv, the total free energy can be calculated analytically
and is given by

E(V) =

T∑
t

‖vt − bv‖
2σ2

−
∑
j

log(1 + exp(gconvj(V, t))

 . (3)

The index j points to the jth hidden unit.
The gradient of the free-energy function with respect to the input of the

network is given by the negative sigmoid function:

∂E(V)

∂gconvj(V, t)
= −(1 + exp(gconvj(V, t))

−1. (4)

The chain rule can be used to calculate the derivatives with respect to the
parameters of the network. The derivative of the free energy with respect to the
input variables is defined as

∂E(V)

∂vt
=

∂E(V)

∂gconv(V, t)

∂gconv(V, t)

∂vt
+

vt − bv
σ2

. (5)



4 Philemon Brakel and Benjamin Schrauwen

(a) Convolutional structure. (b) Recurrent struc-
ture.

Fig. 1: The two model structures that are used in this paper. The wavey circles
represent the hidden units, the circles filled with dots the visible units and empty
circles represent deterministic functions. The time dimension runs from the left
to the right and each circle represents a layer of units.

4 The Recurrent Energy-Based Model

The second model we propose in this paper is the Recurrent Energy-Based Model
(REBM). The energy function of the REBM is again defined by equation 1 but
gconv is replaced by

grec(V, t) = Axt +Bvt + br (6)

xt = tanh(Cxt−1 + Dvt + bx) 1 < t ≤ T, (7)

where A, B, C and D are matrices with network connection parameters and br
and bx are the bias vectors of, respectively, the output variables and the hidden
state variables X. This function can be replaced by any differentiable function of
choice. See Fig. 1b for a graphical representation of the recurrent architecture.
This model is similar to the Recurrent Temporal Restricted Boltzmann Machine
[10] but in our model the units that define the energy are in a separate layer
and the visible variables are not independent anymore given the hidden variables.
Simple Gibbs sampling is not possible anymore but this will also not be required.

5 Training for Missing Value Recovery

Given a sequence V, let Ω be the set of indices that point to elements of data
vectors that have been labeled as missing. For real-valued data, a sound objective
to minimize, is the mean squared error between the values we predicted V̂ and
the actual values V:

L =
1

2

∑
j∈Ω

(Vj − V̂j)
2. (8)

To obtain a prediction, we use an optimization procedure that uses the gradi-
ent with respect to {V̂j |j ∈ Ω} to find a set of values that minimize this energy.



Energy-Based Temporal Neural Networks 5

Running this optimization procedure until convergence takes very long and it
can also not be guaranteed that a global optimum will be found. Recently, it
has been proposed to run the optimizer for just a couple of steps and compute
gradients with respect to the optimization procedure itself [2]. The rationale be-
hind this is that we train the model to predict the correct values given that we
consistently use the same optimizer for inference. Parts of the energy landscape
that the optimizer never reaches will not affect the performance of the model.

To train our models, we first sampled a set of random indices to label as
missing for every sequence. After that, we used a couple of steps of gradient
descent with step size λ on the free energy to obtain predictions. Subsequently,
the gradient of the mean squared error loss L with respect to the parameters
is computed by propagating errors back through the gradient descent steps in
holder variables V̄ and θ̄ that in the end will contain the gradient of the error
with respect to the input variables and the parameters of the model (we use θ
as a placeholder for both the biases and weights of the model). The gradient
with respect to the parameters is used to train the model with stochastic gra-
dient descent. Hence, the model is trained to improve the predictions that the
optimization procedure comes up with directly. To perform the backpropagation
steps, second order derivatives are required. However, the product of these with
a vector can be estimated efficiently using finite differences and only requires
routines that provide the gradient of the free energy with respect to the input
variables and model parameters [2]. See Algorithm 1 for more details. In the
algorithm we omitted that all references to the data only concern the missing
values to avoid cluttered notation.

Algorithm 1 Compute the error gradient through gradient descent

Initialize V̂0

for k = 0 to N − 1 do
V̂k+1 ← V̂k − λ∇V̂E(V̂k; θ)

end for
V̄N ← ∇L(V̂N ) = V̂N −V
θ̄ ← 0
for k = N − 1 to 0 do

θ̄ ← θ̄ − λ ∂
2E(V̂k;θ)

∂θ∂VT V̄k+1

V̄k ← V̄k − λ ∂
2E(V̂k;θ)

∂V∂VT V̄k+1

end for
Return ∇θL = θ̄

Adding artificial corruption to the data and training a model to reconstruct it
is similar to the way denoising autoencoders are trained [12]. The most important
difference is that our models only focus on recovery of the missing values given
the observed variables and not on reconstructing both.



6 Philemon Brakel and Benjamin Schrauwen

6 Experimental Evaluation

6.1 Data

The data consisted of three motion capture recordings from 17 marker positions
represented as three 49-dimensional sequences of joint angles. The data was
downsampled to 30Hz and the sequences consisted of 3128, 438, and 260 frames.
The first sequence was used for training, the second for validation and the third
for testing. The sequences were derived from a subject who was walking and
turning and come from the MIT dataset provided by Eugene Hsu1. The data
was preprocessed by Graham Taylor [11] using parts of Neil Lawrence’s Motion
Capture Toolbox.

6.2 Implementation Details

Good settings of the hyper-parameters of the models were found by doing a
random search on the parameter space, followed by some manual fine-tuning to
find the settings that led to minimal error on the validation set. After this, the
models were trained again on both the train and the validation data with these
settings. Since the CEBM is very parallel in nature, we used a GPU for the
convolution. All models were trained on randomly selected mini batches of 140
frames.

Both the CEBM and the REBM were trained by labeling random sets of di-
mensions as missing. The number of missing dimensions was sampled uniformly.
The specific dimensions were then randomly selected without replacement. The
duration of the data loss was sampled uniformly between 60 and 125 frames.
This adds some bias towards situations in which the same dimensions are miss-
ing for a certain duration. This seems to be a sensible assumption in the case
of motion capture data and it is an advantage of the training method that it is
possible to add this kind of information.

The CEBM had 200 hidden units and its window size was set to 15 time
frames. The model was trained for 50000 iterations with a linearly decreasing
learning rate initialized at .005. The inference optimization was set to three
iterations with a step size of .2. The REBM had 200 units in the recurrent layer
and 50 hidden units. It was trained for 25000 iterations with a linearly decreasing
learning rate that started at .001. The step size of the optimization procedure
was .2 and 5 iterations were done for inference. The CRBM had 200 hidden
units, used the 10 previous frames as context and was trained using contrastive
divergence with three sampling steps. The model was trained for 50000 iterations
with a linearly decaying learning rate initialized at 10−4.

Nearest neighbour interpolation was done by selecting the frame from the
train set with minimal Euclidean distance to the test frame according to the
observed dimensions. The distances were computed in the normalized joint angle
space.

1 http://people.csail.mit.edu/ehsu/work/sig05stf/



Energy-Based Temporal Neural Networks 7

6.3 Evaluation

To evaluate the models, a set of dimensions was removed from the test data for
a duration of 120 frames (4 seconds). This was done for either the markers of
the left leg or the markers of the whole upper body (everything above the hip).
Because the offset of this gap was chosen randomly and because the CRBM had
a stochastic inference procedure, this process was repeated 500 times to obtain
average mean squared error values for both the train and the test data.

Both the energy-based models used the same inference procedure as they
used during training to fill in the missing values. The CRBM was used in a
generative way by conditioning it on the samples it generated at the previous
time steps while clamping the observed values and only sampling those that were
missing. Preliminary results showed that this led to similar results as the use of
mean-field or minimization of the model’s free energy to do inference.

Table 1 shows the mean squared error between the reconstructed dimensions
of the data and their actual values. The convolutional and recurrent models
clearly outperform the CRBM and nearest neighbour interpolation on the re-
construction of the left leg. The CEBM has the best performance but a com-
parison of the train and test error scores suggests that the REBM appears to
display better generalization properties. The CRBM seems to suffer most from
over fitting. Surprisingly, the trained models all seem to perform equally well
for reconstructing the whole upper body and far better than nearest neighbour
interpolation.

Table 1: Results in mean squared error on the motion capture data.

Left leg Upper body
Train Test Train Test

CEBM .18 .29 .45 .45
REBM .24 .33 .47 .44
CRBM .23 .42 .46 .47
Nearest neighb. N/A .45 N/A .76

7 Discussion

In this work we proposed two models for imputing missing values in time series
and a way to train them for that task. Both models outperformed the baseline
models on a motion capture task and we conclude from this that the approach is
promising and worthy of further research. By showing that neural architectures
can be trained to impute missing values without the need for approximations to
complicated probability distributions, if they are cast in an energy-based learning
framework, we hope to inspire more work in this area.



8 Philemon Brakel and Benjamin Schrauwen

A downside of the training methodology is that it introduces a couple of extra
parameters that need to be tuned. This could be solved by replacing the gradient
descent inference procedure with an optimizer that doesn’t require a step size
parameter. Another limitation is that the gradient of the energy can only be
computed for continuous data but for many datasets this is not a problem.
Future work should also investigate the success of the methods on data sets
from other domains, like video, music or geophysical records.

Acknowledgments. This article was written under partial support by the
FWO Flanders project G.0088.09.

References

1. Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal Statis-
tical Society B-48, 259–302 (1986)

2. Domke, J.: Generic methods for optimization-based modeling. Journal of Machine
Learning Research - Proceedings Track 22, 318–326 (2012)

3. Freund, Y., Haussler, D.: Unsupervised Learning of Distributions on Binary Vectors
Using Two Layer Networks. Tech. rep., Santa Cruz, CA, USA (1994)

4. Hinton, G.E.: Training Products of Experts by Minimizing Contrastive Divergence.
Neural Computation 14(8), 1771–1800 (2002)

5. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Computation 18(7), 1527–1554 (2006)

6. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial on energy-
based learning. In: Bakir, G., Hofman, T., Schölkopf, B., Smola, A., Taskar, B.
(eds.) Predicting Structured Data. MIT Press (2006)

7. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations. In: Proceedings
of the 26th Annual International Conference on Machine Learning. pp. 609–616.
ICML ’09, ACM, New York, NY, USA (2009)

8. Mirowski, P., LeCun, Y.: Dynamic factor graphs for time series modeling. In: Proc.
European Conference on Machine Learning (ECML’09) (2009)

9. Ngiam, J., Chen, Z., Koh, P.W., Ng, A.: Learning deep energy models. In: Getoor,
L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on Machine
Learning. pp. 1105–1112. ACM, New York, NY, USA (June 2011)

10. Sutskever, I., Hinton, G.E., Taylor, G.W.: The recurrent temporal restricted boltz-
mann machine. In: Advances in Neural Information Processing Systems. vol. 21.
MIT Press, Cambridge, MA (2008)

11. Taylor, G.W., Hinton, G.E., Roweis, S.: Modeling human motion using binary
latent variables. In: Advances in Neural Information Processing Systems. vol. 19.
MIT Press, Cambridge, MA (2007)

12. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing
robust features with denoising autoencoders. In: Proceedings of the 25th Interna-
tional Conference on Machine learning. pp. 1096–1103. ICML ’08, ACM, New York,
NY, USA (2008)


