68 research outputs found
Deuterated molecules in DM Tau: DCO+, but no HDO
We report the detection of the J=2-1 line of DCO+ in the proto-planetary disk
of DM Tau and re-analyze the spectrum covering the 465 GHz transition of HDO in
this source, recently published by Ceccarelli et al. (2005). A modelling of the
DCO+ line profile with the source parameters derived from high resolution HCO+
observations yields a DCO+/HCO+ abundance ratio of about 0.004, an order of
magnitude smaller than that derived in the low mass cores. The re-analysis of
the 465 GHz spectrum, using the proper continuum flux (0.5 Jy) and source
systemic velocity (6.05 km/s), makes it clear that the absorption features
attributed to HDO and C6H are almost certainly unrelated to these species. We
show that the line-to-continuum ratio of an absorption line in front of a
Keplerian disk can hardly exceed the ratio of the turbulent velocity to the
projected rotation velocity at the disk edge, unless the line is optically very
thick (tau > 10 000). This ratio is typically 0.1-0.3 in proto-planetary disks
and is about 0.15 in DM Tau, much smaller than that for the alleged absorption
features. We also show that the detection of H2D+ in DM Tau, previously
reported by these authors, is only a 2-sigma detection when the proper velocity
is adopted. So far, DCO+ is thus the only deuterated molecule clearly detected
in proto-planetary disks
Resolving the inner dust disks surrounding LkCa 15 and MWC 480 at mm wavelengths
International audienceWe performed sub-arcsecond high-sensitivity nterferometric observations of the thermal dust emission at 1.4 mm and 2.8 mm in the disks surrounding LkCa 15 and MWC 480, with the new 750 m baselines of the IRAM PdBI array. This provides a linear resolution of about 60 AU at the Taurus distance. We report the existence of a cavity of about 50 AU radius in the inner disk of LkCa 15. Whereas LkCa 15 emission is optically thin, the optically thick core of MWC 480 is resolved at 1.4 mm with a radius of about 35 AU, constraining the dust temperature. In MWC 480, the dust emission is coming from a colder layer than the CO emission, most likely the disk mid-plane. These observations provide direct evidence of an inner cavity around LkCa 15. Such a cavity most probably results from the tidal disturbance created by a low mass companion or large planet at about 30 AU from the star. These results suggest that planetary system formation is already at work in LkCa 15. They also indicate that the classical steady-state viscous disk model is a too simplistic description of the inner 50 AU of ''proto-planetary'' disks, and that the disk evolution is coupled to the planet formation process. The MWC 480 results indicate that a proper estimate of the dust temperature and size of the optically thick core are essential to determine the dust emissivity index
Circumbinary Gas Accretion onto a Central Binary: Infrared Molecular Hydrogen Emission from GG Tau A
We present high spatial resolution maps of ro-vibrational molecular hydrogen
emission from the environment of the GG Tau A binary component in the GG Tau
quadruple system. The H2 v= 1-0 S(1) emission is spatially resolved and
encompasses the inner binary, with emission detected at locations that should
be dynamically cleared on several hundred-year timescales. Extensions of H2 gas
emission are seen to ~100 AU distances from the central stars. The v = 2-1 S(1)
emission at 2.24 microns is also detected at ~30 AU from the central stars,
with a line ratio of 0.05 +/- 0.01 with respect to the v = 1-0 S(1) emission.
Assuming gas in LTE, this ratio corresponds to an emission environment at ~1700
K. We estimate that this temperature is too high for quiescent gas heated by
X-ray or UV emission from the central stars. Surprisingly, we find that the
brightest region of H2 emission arises from a spatial location that is exactly
coincident with a recently revealed dust "streamer" which seems to be
transferring material from the outer circumbinary ring around GG Tau A into the
inner region. As a result, we identify a new excitation mechanism for
ro-vibrational H2 stimulation in the environment of young stars. The H2 in the
GG Tau A system appears to be stimulated by mass accretion infall as material
in the circumbinary ring accretes onto the system to replenish the inner
circumstellar disks. We postulate that H2 stimulated by accretion infall could
be present in other systems, particularly binaries and "transition disk"
systems which have dust cleared gaps in their circumstellar environments.Comment: 18 pages, including 4 figures. Accepted for publication in Ap
First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole
We present the first Event Horizon Telescope (EHT) images of M87, using observations from April 2017 at 1.3 mm wavelength. These images show a prominent ring with a diameter of similar to 40 mu as, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole. The ring is persistent across four observing nights and shows enhanced brightness in the south. To assess the reliability of these results, we implemented a two-stage imaging procedure. In the first stage, four teams, each blind to the others' work, produced images of M87 using both an established method (CLEAN) and a newer technique (regularized maximum likelihood). This stage allowed us to avoid shared human bias and to assess common features among independent reconstructions. In the second stage, we reconstructed synthetic data from a large survey of imaging parameters and then compared the results with the corresponding ground truth images. This stage allowed us to select parameters objectively to use when reconstructing images of M87. Across all tests in both stages, the ring diameter and asymmetry remained stable, insensitive to the choice of imaging technique. We describe the EHT imaging procedures, the primary image features in M87, and the dependence of these features on imaging assumptions
First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole
We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 +/- 3 mu as and constrain its fractional width to b
First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole
We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 +/- 3 mu as and constrain its fractional width to be <0.5. Associating the crescent feature with the emission surrounding the black hole shadow, we infer an angular gravitational radius of GM/Dc(2) = 3.8 +/- 0.4 mu as. Folding in a distance measurement of 16.8(-0.7)(+0.8) gives a black hole mass of M = 6.5. 0.2 vertical bar(stat) +/- 0.7 vertical bar(sys) x 10(9) M-circle dot. This measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole, as predicted by the general theory of relativity
First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole
We present the first Event Horizon Telescope (EHT) images of M87, using observations from April 2017 at 1.3 mm wavelength. These images show a prominent ring with a diameter of similar to 40 mu as, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole. The ring is persistent across four observing nights and shows enhanced brightness in the south. To assess the reliability of these results, we implemented a two-stage imaging procedure. In the first stage, four teams, each blind to the others\u27 work, produced images of M87 using both an established method (CLEAN) and a newer technique (regularized maximum likelihood). This stage allowed us to avoid shared human bias and to assess common features among independent reconstructions. In the second stage, we reconstructed synthetic data from a large survey of imaging parameters and then compared the results with the corresponding ground truth images. This stage allowed us to select parameters objectively to use when reconstructing images of M87. Across all tests in both stages, the ring diameter and asymmetry remained stable, insensitive to the choice of imaging technique. We describe the EHT imaging procedures, the primary image features in M87, and the dependence of these features on imaging assumptions
Selective dynamical imaging of interferometric data
Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon
Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The
sparse nature of the EHT’s (u, v)-coverage presents a challenge when attempting to resolve highly time-variable
sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course
of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected
baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of
coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their
ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature
and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT
observations of sources with simple orbital variability. We then use these results to make recommendations for
imaging the 2017 EHT Sgr A* data sethttp://iopscience.iop.org/2041-8205Physic
The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole
Abstract: Synchrotron radiation from hot gas near a black hole results in a polarized image. The image polarization is determined by effects including the orientation of the magnetic field in the emitting region, relativistic motion of the gas, strong gravitational lensing by the black hole, and parallel transport in the curved spacetime. We explore these effects using a simple model of an axisymmetric, equatorial accretion disk around a Schwarzschild black hole. By using an approximate expression for the null geodesics derived by Beloborodov and conservation of the Walker–Penrose constant, we provide analytic estimates for the image polarization. We test this model using currently favored general relativistic magnetohydrodynamic simulations of M87*, using ring parameters given by the simulations. For a subset of these with modest Faraday effects, we show that the ring model broadly reproduces the polarimetric image morphology. Our model also predicts the polarization evolution for compact flaring regions, such as those observed from Sgr A* with GRAVITY. With suitably chosen parameters, our simple model can reproduce the EVPA pattern and relative polarized intensity in Event Horizon Telescope images of M87*. Under the physically motivated assumption that the magnetic field trails the fluid velocity, this comparison is consistent with the clockwise rotation inferred from total intensity images
- …