21,803 research outputs found
Transonic turbine blade cascade testing facility
NASA LeRC has designed and constructed a new state-of-the-art test facility. This facility, the Transonic Turbine Blade Cascade, is used to evaluate the aerodynamics and heat transfer characteristics of blade geometries for future turbine applications. The facility's capabilities make it unique: no other facility of its kind can combine the high degree of airflow turning, infinitely adjustable incidence angle, and high transonic flow rates. The facility air supply and exhaust pressures are controllable to 16.5 psia and 2 psia, respectively. The inlet air temperatures are at ambient conditions. The facility is equipped with a programmable logic controller with a capacity of 128 input/output channels. The data acquisition system is capable of scanning up to 1750 channels per sec. This paper discusses in detail the capabilities of the facility, overall facility design, instrumentation used in the facility, and the data acquisition system. Actual research data is not discussed
Dealiasing techniques for high-order spectral element methods on regular and irregular grids
High-order methods are becoming increasingly attractive in both academia and industry, especially in the context of computational fluid dynamics. However, before they can be more widely adopted, issues such as lack of robustness in terms of numerical stability need to be addressed, particularly when treating industrial-type problems where challenging geometries and a wide range of physical scales, typically due to high Reynolds numbers, need to be taken into account. One source of instability is aliasing effects which arise from the nonlinearity of the underlying problem. In this work we detail two dealiasing strategies based on the concept of consistent integration. The first uses a localised approach, which is useful when the nonlinearities only arise in parts of the problem. The second is based on the more traditional approach of using a higher quadrature. The main goal of both dealiasing techniques is to improve the robustness of high order spectral element methods, thereby reducing aliasing-driven instabilities. We demonstrate how these two strategies can be effectively applied to both continuous and discontinuous discretisations, where, in the latter, both volumetric and interface approximations must be considered. We show the key features of each dealiasing technique applied to the scalar conservation law with numerical examples and we highlight the main differences in terms of implementation between continuous and discontinuous spatial discretisations
Direct Interactions in Relativistic Statistical Mechanics
Directly interacting particles are considered in the multitime formalism of
predictive relativistic mechanics. When the equations of motion leave a
phase-space volume invariant, it turns out that the phase average of any first
integral, covariantly defined as a flux across a -dimensional surface, is
conserved. The Hamiltonian case is discussed, a class of simple models is
exhibited, and a tentative definition of equilibrium is proposed.Comment: Plain Tex file, 26 page
Rapid Metabolic Recovery Following Vigorous Exercise in Burrow-Dwelling Larval Sea Lampreys (\u3cem\u3ePetromyzon marinus\u3c/em\u3e)
Although the majority of the sea lamprey’s (Petromyzon marinus) life cycle is spent as a burrow-dwelling larva, or ammocoete, surprisingly little is known about intermediary metabolism in this stage of the lamprey’s life history. In this study, larval sea lampreys (ammocoetes) were vigorously exercised for 5 min, and their patterns of metabolic fuel depletion and replenishment and oxygen consumption, along with measurements of net whole-body acid and ion movements, were followed during a 4–24-h postexercise recovery period. Exercise led to initial five- to sixfold increases in postexercise oxygen consumption, which remained significantly elevated by 1.5–2.0 times for the next 3 h. Exercise also led to initial 55% drops in whole-body phosphocreatine, which was restored by 0.5 h, but no significant changes in whole-body adenosine triphosphate were observed. Whole-body glycogen concentrations dropped by 70% immediately following exercise and were accompanied by a simultaneous ninefold increase in lactate. Glycogen and lactate were quickly restored to resting levels after 0.5 and 2.0 h, respectively. The presence of an associated metabolic acidosis was supported by very high rates of metabolic acid excretion, which approached 1,000 nmol g-1 during the first 2 h of postexercise recovery. Exercise-induced ion imbalances were also rapidly alleviated, as initially high rates of net Na+ and Cl- loss (—1,200 nmol g-1h-1 and —1,800 nmol g-1h-1 respectively) were corrected within 1–2 h. Although larval sea lampreys spend most of their time burrowed, they are adept at performing and recovering from vigorous anaerobic exercise. Such attributes could be important when these animals are vigorously swimming or burrowing as they evade predators or forage
Distinguishing an ejected blob from alternative flare models at the Galactic centre with GRAVITY
The black hole at the Galactic centre exhibits regularly flares of radiation,
the origin of which is still not understood. In this article, we study the
ability of the near-future GRAVITY infrared instrument to constrain the nature
of these events. We develop realistic simulations of GRAVITY astrometric data
sets for various flare models. We show that the instrument will be able to
distinguish an ejected blob from alternative flare models, provided the blob
inclination is >= 45deg, the flare brightest magnitude is 14 <= mK <= 15 and
the flare duration is >= 1h30.Comment: 11 pages, 9 figures, accepted by MNRA
Toward NS5 Branes on the Resolved Cone over Y^{p,q}
Motivated by recent developments in the understanding of the connection
between five branes on resolved geometries and the corresponding
generalizations of complex deformations in the context of the warped resolved
deformed conifold, we consider the construction of five branes solutions on the
resolved cone over Y^{p,q} spaces. We establish the existence of supersymmetric
five branes solutions wrapped on two-cycles of the resolved cone over Y^{p,q}
in the probe limit. We then use calibration techniques to begin the
construction of fully back-reacted five branes; we present an Ansatz and the
corresponding equations of motion. Our results establish a detailed framework
to study back-reacted five branes wrapped on the resolved cone over Y^{p,q} and
as a first step we find explicit solutions and construct an asymptotic
expansion with the expected properties.Comment: 23+17pp, no figures; v2: references added, various clarification
Structural precursor to the metal-insulator transition in V_2O_3
The temperature dependence of the local structure of V_2O_3 in the vicinity
of the metal to insulator transition (MIT) has been investigated using hard
X-ray absorption spectroscopy. It is shown that the vanadium pair distance
along the hexagonal c-axis changes abruptly at the MIT as expected. However, a
continuous increase of the tilt of these pairs sets in already at higher
temperatures and reaches its maximum value at the onset of the electronic and
magnetic transition. These findings confirm recent theoretical results which
claim that electron-lattice coupling is important for the MIT in V_2O_3. Our
results suggest that interactions in the basal plane play a decisive role for
the MIT and orbital degrees of freedom drive the MIT via changes in
hybridization.Comment: 6 pages, 5 figures, 2 table
Extraction of the Spin Glass Correlation Length
The peak of the spin glass relaxation rate, S(t)=d{-M_{TRM}(t,t_w)}/H/{d ln
t}, is directly related to the typical value of the free energy barrier which
can be explored over experimental time scales. A change in magnetic field H
generates an energy E_z={N_s}{X_fc}{H^2} by which the barrier heights are
reduced, where X_{fc} is the field cooled susceptibility per spin, and N_s is
the number of correlated spins. The shift of the peak of S(t) gives E_z,
generating the correlation length, Ksi(t,T), for Cu:Mn 6at.% and
CdCr_{1.7}In_{0.3}S_4. Fits to power law dynamics, Ksi(t,T)\propto
{t}^{\alpha(T)} and activated dynamics Ksi(t,T) \propto {ln t}^{1/psi} compare
well with simulation fits, but possess too small a prefactor for activated
dynamics.Comment: 4 pages, 4 figures. Department of Physics, University of California,
Riverside, California, and Service de Physique de l'Etat Condense, CEA
Saclay, Gif sur Yvette, France. To appear in Phys. Rev. Lett. January 4, 199
- …