7,617 research outputs found

    Multi-user lattice coding for the multiple-access relay channel

    Full text link
    This paper considers the multi-antenna multiple access relay channel (MARC), in which multiple users transmit messages to a common destination with the assistance of a relay. In a variety of MARC settings, the dynamic decode and forward (DDF) protocol is very useful due to its outstanding rate performance. However, the lack of good structured codebooks so far hinders practical applications of DDF for MARC. In this work, two classes of structured MARC codes are proposed: 1) one-to-one relay-mapper aided multiuser lattice coding (O-MLC), and 2) modulo-sum relay-mapper aided multiuser lattice coding (MS-MLC). The former enjoys better rate performance, while the latter provides more flexibility to tradeoff between the complexity of the relay mapper and the rate performance. It is shown that, in order to approach the rate performance achievable by an unstructured codebook with maximum-likelihood decoding, it is crucial to use a new K-stage coset decoder for structured O-MLC, instead of the one-stage decoder proposed in previous works. However, if O-MLC is decoded with the one-stage decoder only, it can still achieve the optimal DDF diversity-multiplexing gain tradeoff in the high signal-to-noise ratio regime. As for MS-MLC, its rate performance can approach that of the O-MLC by increasing the complexity of the modulo-sum relay-mapper. Finally, for practical implementations of both O-MLC and MS-MLC, practical short length lattice codes with linear mappers are designed, which facilitate efficient lattice decoding. Simulation results show that the proposed coding schemes outperform existing schemes in terms of outage probabilities in a variety of channel settings.Comment: 32 pages, 5 figure

    VConv-DAE: Deep Volumetric Shape Learning Without Object Labels

    Full text link
    With the advent of affordable depth sensors, 3D capture becomes more and more ubiquitous and already has made its way into commercial products. Yet, capturing the geometry or complete shapes of everyday objects using scanning devices (e.g. Kinect) still comes with several challenges that result in noise or even incomplete shapes. Recent success in deep learning has shown how to learn complex shape distributions in a data-driven way from large scale 3D CAD Model collections and to utilize them for 3D processing on volumetric representations and thereby circumventing problems of topology and tessellation. Prior work has shown encouraging results on problems ranging from shape completion to recognition. We provide an analysis of such approaches and discover that training as well as the resulting representation are strongly and unnecessarily tied to the notion of object labels. Thus, we propose a full convolutional volumetric auto encoder that learns volumetric representation from noisy data by estimating the voxel occupancy grids. The proposed method outperforms prior work on challenging tasks like denoising and shape completion. We also show that the obtained deep embedding gives competitive performance when used for classification and promising results for shape interpolation

    Energy-based temporal neural networks for imputing missing values

    Get PDF
    Imputing missing values in high dimensional time series is a difficult problem. There have been some approaches to the problem [11,8] where neural architectures were trained as probabilistic models of the data. However, we argue that this approach is not optimal. We propose to view temporal neural networks with latent variables as energy-based models and train them for missing value recovery directly. In this paper we introduce two energy-based models. The first model is based on a one dimensional convolution and the second model utilizes a recurrent neural network. We demonstrate how ideas from the energy-based learning framework can be used to train these models to recover missing values. The models are evaluated on a motion capture dataset

    Cost-effectiveness of eplerenone in patients with systolic heart failure and mild symptoms

    Get PDF
    Aim In the Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF), aldosterone blockade with eplerenone decreased mortality and hospitalisation in patients with mild symptoms (New York Heart Association class II) and chronic systolic heart failure (HF). The present study evaluated the cost-effectiveness of eplerenone in the treatment of these patients in the UK and Spain.<p></p> Methods and results Results from the EMPHASIS-HF trial were used to develop a discrete-event simulation model estimating lifetime direct costs and effects (life years and quality-adjusted life years (QALYs) gained) of the addition of eplerenone to standard care among patients with chronic systolic HF and mild symptoms. Eplerenone plus standard care compared with standard care alone increased lifetime direct costs per patient by £4284 for the UK and €7358 for Spain, with additional quality-adjusted life expectancy of 1.22 QALYs for the UK and 1.33 QALYs for Spain. Mean lifetime costs were £3520 per QALY in the UK and €5532 per QALY in Spain. Probabilistic sensitivity analysis suggested a 100% likelihood of eplerenone being regarded as cost-effective at a willingness-to-pay threshold of £20 000 per QALY (UK) or €30 000 per QALY (Spain).<p></p> Conclusions By currently accepted standards of value for money, the addition of eplerenone to optimal medical therapy for patients with chronic systolic HF and mild symptoms is likely to be cost-effective.<p></p&gt

    Astrophysical Observations of a Dark Matter-Baryon Fifth Force

    Full text link
    We consider the effects of an attractive, long-range Yukawa interaction between baryons and dark matter (DM), focusing in particular on temperature and pulsar timing observations of neutron stars (NSs). We show that such a fifth force, with strength modestly stronger than gravity at ranges greater than tens of kilometers (corresponding to mediator masses less than 10−11eV10^{-11} \text{eV}), can dramatically enhance dark matter kinetic heating, capture, and pulsar timing Doppler shifts relative to gravity plus short range interactions alone. Using the coldest observed NS and pulsar timing array (PTA) data, we derive limits on fifth force strength over a DM mass range spanning light dark matter up to order solar mass composite DM objects. We also consider an indirect limit by combining bullet cluster limits on the DM self-interaction with weak equivalence principle test limits on baryonic self-interactions. We find the combined indirect limits are moderately stronger than kinetic heating and PTA limits, except when considering a DM subcomponent.Comment: 40 pages, 6 figures, v2: updated with analysis using another PTA dataset, figures updated, conclusions unchange

    Macroscopic Dark Matter Detection with Gravitational Wave Experiments

    Full text link
    We study signatures of macroscopic dark matter (DM) in current and future gravitational wave (GW) experiments. Transiting DM with a mass of ∼105−1015\sim10^5-10^{15} kg that saturates the local DM density can be potentially detectable by GW detectors, depending on the baseline of the detector and the strength of the force mediating the interaction. In the context of laser interferometers, we derive the gauge invariant observable due to a transiting DM, including the Shapiro effect, and adequately account for the finite photon travel time within an interferometer arm. In particular, we find that the Shapiro effect can be dominant for short-baseline interferometers such as Holometer and GQuEST. We also find that proposed experiments such as Cosmic Explorer and Einstein Telescope can constrain a fifth force between DM and baryons, at the level of strength ∼103\sim 10^3 times stronger than gravity for, e.g., kg mass DM with a fifth-force range of 10610^6 m.Comment: 40 pages, 6 figure

    Interferometer Response to Geontropic Fluctuations

    Full text link
    We model vacuum fluctuations in quantum gravity with a scalar field, characterized by a high occupation number, coupled to the metric. The occupation number of the scalar is given by a thermal density matrix, whose form is motivated by fluctuations in the vacuum energy, which have been shown to be conformal near a light-sheet horizon. For the experimental measurement of interest in an interferometer, the size of the energy fluctuations is fixed by the area of a surface bounding the volume of spacetime being interrogated by an interferometer. We compute the interferometer response to these "geontropic" scalar-metric fluctuations, and apply our results to current and future interferometer measurements, such as LIGO and the proposed GQuEST experiment.Comment: 17 pages, 6 figure

    Astroclimatic Characterization of Vallecitos: A candidate site for the Cherenkov Telescope Array at San Pedro Martir

    Full text link
    We conducted an 18 month long study of the weather conditions of the Vallecitos, a proposed site in Mexico to harbor the northern array of the Cherenkov Telescope Array (CTA). It is located in Sierra de San Pedro Martir (SPM) a few kilometers away from Observatorio Astron\'omico Nacional. The study is based on data collected by the ATMOSCOPE, a multi-sensor instrument measuring the weather and sky conditions, which was commissioned and built by the CTA Consortium. Additionally, we compare the weather conditions of the optical observatory at SPM to the Vallecitos regarding temperature, humidity, and wind distributions. It appears that the excellent conditions at the optical observatory benefit from the presence of microclimate established in the Vallecitos.Comment: 16 pages, 16 figures, Publication of the Astronomical Society of the Pacific, accepte
    • …
    corecore