63 research outputs found

    Cytotoxicity of Triorganophosphinegold(I) Complexes of Thiobenzoate

    Get PDF
    The preparation and characterization of two triorganophosphinegold(I) complexes containing the anion derived from thiobenzoic acid are described. The cytotoxicity of these complexes has been investigated along with that of triphenylphosphinegold(I) mercaptopurinate, a known anti-tumor compound, against a variety of human cell lines. The complexes showed moderate to high cytotoxicity (ID50 250 – 2500 ng/ml)

    Numerical Investigation of Cosmological Singularities

    Get PDF
    Although cosmological solutions to Einstein's equations are known to be generically singular, little is known about the nature of singularities in typical spacetimes. It is shown here how the operator splitting used in a particular symplectic numerical integration scheme fits naturally into the Einstein equations for a large class of cosmological models and thus allows study of their approach to the singularity. The numerical method also naturally singles out the asymptotically velocity term dominated (AVTD) behavior known to be characteristic of some of these models, conjectured to describe others, and probably characteristic of a subclass of the rest. The method is first applied to the unpolarized Gowdy T3^3 cosmology. Exact pseudo-unpolarized solutions are used as a code test and demonstrate that a 4th order accurate implementation of the numerical method yields acceptable agreement. For generic initial data, support for the conjecture that the singularity is AVTD with geodesic velocity (in the harmonic map target space) < 1 is found. A new phenomenon of the development of small scale spatial structure is also observed. Finally, it is shown that the numerical method straightforwardly generalizes to an arbitrary cosmological spacetime on T3×RT^3 \times R with one spacelike U(1) symmetry.Comment: 37 pp +14 figures (not included, available on request), plain Te

    Evidence for an oscillatory singularity in generic U(1) symmetric cosmologies on T3×RT^3 \times R

    Get PDF
    A longstanding conjecture by Belinskii, Lifshitz, and Khalatnikov that the singularity in generic gravitational collapse is locally oscillatory is tested numerically in vacuum, U(1) symmetric cosmological spacetimes on T3×RT^3 \times R. If the velocity term dominated (VTD) solution to Einstein's equations is substituted into the Hamiltonian for the full Einstein evolution equations, one term is found to grow exponentially. This generates a prediction that oscillatory behavior involving this term and another (which the VTD solution causes to decay exponentially) should be observed in the approach to the singularity. Numerical simulations strongly support this prediction.Comment: 15 pages, Revtex, includes 12 figures, psfig. High resolution versions of figures 7, 8, 9, and 11 may be obtained from anonymous ftp to ftp://vela.acs.oakland.edu/pub/berger/u1genfig

    Numerical Evidence that the Singularity in Polarized U(1) Symmetric Cosmologies on T3×RT^3 \times R is Velocity Dominated

    Full text link
    Numerical evidence supports the conjecture that polarized U(1) symmetric cosmologies have asymptotically velocity term dominated singularities.Comment: 8 pages, RevTex, 4 figures, uses eps

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453

    Artificial Intelligence in Education

    Get PDF
    Artificial Intelligence (AI) technologies have been researched in educational contexts for more than 30 years (Woolf 1988; Cumming and McDougall 2000; du Boulay 2016). More recently, commercial AI products have also entered the classroom. However, while many assume that Artificial Intelligence in Education (AIED) means students taught by robot teachers, the reality is more prosaic yet still has the potential to be transformative (Holmes et al. 2019). This chapter introduces AIED, an approach that has so far received little mainstream attention, both as a set of technologies and as a field of inquiry. It discusses AIED’s AI foundations, its use of models, its possible future, and the human context. It begins with some brief examples of AIED technologies

    The complex genetics of gait speed:Genome-wide meta-analysis approach

    Get PDF
    Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore